BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24569039)

  • 1. Extensive cotransformation of natural variation into chromosomes of naturally competent Haemophilus influenzae.
    Mell JC; Lee JY; Firme M; Sinha S; Redfield RJ
    G3 (Bethesda); 2014 Apr; 4(4):717-31. PubMed ID: 24569039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of natural genetic variation into Haemophilus influenzae genomes.
    Mell JC; Shumilina S; Hall IM; Redfield RJ
    PLoS Pathog; 2011 Jul; 7(7):e1002151. PubMed ID: 21829353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations into genome diversity of Haemophilus influenzae using whole genome sequencing of clinical isolates and laboratory transformants.
    Power PM; Bentley SD; Parkhill J; Moxon ER; Hood DW
    BMC Microbiol; 2012 Nov; 12():273. PubMed ID: 23176117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of Haemophilus influenzae by plasmid RSF0885.
    Notani NK; Setlow JK; McCarthy D; Clayton NL
    J Bacteriol; 1981 Dec; 148(3):812-6. PubMed ID: 6975775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosomally integrated conjugative plasmids are common in antibiotic-resistant Haemophilus influenzae.
    Stuy JH
    J Bacteriol; 1980 Jun; 142(3):925-30. PubMed ID: 6966629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processing of donor DNA during Haemophilus influenzae transformation: analysis using a model plasmid system.
    Pifer ML; Smith HO
    Proc Natl Acad Sci U S A; 1985 Jun; 82(11):3731-5. PubMed ID: 2987941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haemophilus influenzae: using comparative genomics to accurately identify a highly recombinogenic human pathogen.
    Price EP; Sarovich DS; Nosworthy E; Beissbarth J; Marsh RL; Pickering J; Kirkham LA; Keil AD; Chang AB; Smith-Vaughan HC
    BMC Genomics; 2015 Aug; 16(1):641. PubMed ID: 26311542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracing the evolution of competence in Haemophilus influenzae.
    Maughan H; Redfield RJ
    PLoS One; 2009 Jun; 4(6):e5854. PubMed ID: 19516897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of chromosome homology of plasmid transformation and plasmid conjugal transfer in Haemophilus influenzae.
    Balganesh M; Setlow JK
    Basic Life Sci; 1985; 30():571-84. PubMed ID: 2990429
    [No Abstract]   [Full Text] [Related]  

  • 10. Extensive variation in natural competence in Haemophilus influenzae.
    Maughan H; Redfield RJ
    Evolution; 2009 Jul; 63(7):1852-66. PubMed ID: 19239488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ethylenediaminetetraacetic acid on deoxyribonucleic acid entry and recombination in transformation of a wild-type strain and a rec-1 mutant of Haemophilus influenzae.
    Noteborn M; Venema G; Kooistra J
    J Bacteriol; 1981 Mar; 145(3):1189-95. PubMed ID: 6782089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of additive genetic transformation in Haemophilus influenzae.
    Stuy JH
    J Bacteriol; 1980 Dec; 144(3):999-1002. PubMed ID: 6969256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. rpe, a cis-acting element from the strA region of the Haemophilus influenzae chromosome that makes plasmid establishment independent of recombination.
    McCarthy D; Cox SS
    J Bacteriol; 1986 Oct; 168(1):186-91. PubMed ID: 3489709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HP0333, a member of the dprA family, is involved in natural transformation in Helicobacter pylori.
    Ando T; Israel DA; Kusugami K; Blaser MJ
    J Bacteriol; 1999 Sep; 181(18):5572-80. PubMed ID: 10482496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Horizontal gene transfer of ftsI, encoding penicillin-binding protein 3, in Haemophilus influenzae.
    Takahata S; Ida T; Senju N; Sanbongi Y; Miyata A; Maebashi K; Hoshiko S
    Antimicrob Agents Chemother; 2007 May; 51(5):1589-95. PubMed ID: 17325223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of Haemophilus influenzae by plasmid RSF0885 containing a cloned segment of chromosomal deoxyribonucleic acid.
    Setlow JK; Notani NK; McCarthy D; Clayton NL
    J Bacteriol; 1981 Dec; 148(3):804-11. PubMed ID: 6975774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antagonistic Pleiotropy in the Bifunctional Surface Protein FadL (OmpP1) during Adaptation of Haemophilus influenzae to Chronic Lung Infection Associated with Chronic Obstructive Pulmonary Disease.
    Moleres J; Fernández-Calvet A; Ehrlich RL; Martí S; Pérez-Regidor L; Euba B; Rodríguez-Arce I; Balashov S; Cuevas E; Liñares J; Ardanuy C; Martín-Santamaría S; Ehrlich GD; Mell JC; Garmendia J
    mBio; 2018 Sep; 9(5):. PubMed ID: 30254117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of DNA replication by transformation in a Haemophilus influenzae mutant carrying an altered Rec-1 protein.
    Kooistra J; van Boxel T; Venema G
    J Bacteriol; 1983 May; 154(2):686-92. PubMed ID: 6601658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Horizontal Gene Transfer in the Development of Multidrug Resistance in Haemophilus influenzae.
    Hegstad K; Mylvaganam H; Janice J; Josefsen E; Sivertsen A; Skaare D
    mSphere; 2020 Jan; 5(1):. PubMed ID: 31996416
    [No Abstract]   [Full Text] [Related]  

  • 20. Analysis of genomic patchiness of Haemophilus influenzae and Saccharomyces cerevisiae chromosomes.
    Liò P; Politi A; Ruffo S; Buiatti M
    J Theor Biol; 1996 Dec; 183(4):455-69. PubMed ID: 9015460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.