These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24569043)

  • 1. Recovery of volatile fatty acids via membrane contactor using flat membranes: experimental and theoretical analysis.
    Tugtas AE
    Waste Manag; 2014 Jul; 34(7):1171-8. PubMed ID: 24569043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic fermentation of organic solid wastes: volatile fatty acid production and separation.
    Yesil H; Tugtas AE; Bayrakdar A; Calli B
    Water Sci Technol; 2014; 69(10):2132-8. PubMed ID: 24845331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective separation of nutrients and volatile fatty acids from food wastes using electrodialysis and membrane contactor for resource valorization.
    Kotoka F; Gutierrez L; Verliefde A; Cornelissen E
    J Environ Manage; 2024 Mar; 354():120290. PubMed ID: 38367499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors.
    Aydin S; Yesil H; Tugtas AE
    Bioresour Technol; 2018 Feb; 250():548-555. PubMed ID: 29197778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid dry-fermentation and membrane contactor system: Enhanced volatile fatty acid (VFA) production and recovery from organic solid wastes.
    Yesil H; Calli B; Tugtas AE
    Water Res; 2021 Mar; 192():116831. PubMed ID: 33485265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration.
    Colon G; Sager JC
    Life Support Biosph Sci; 2001; 7(4):291-9. PubMed ID: 11676457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatile fatty acid evolution in biomass mixture composts prepared in open and closed bioreactors.
    Plachá D; Raclavská H; Kučerová M; Kuchařová J
    Waste Manag; 2013 May; 33(5):1104-12. PubMed ID: 23422043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0.
    Yan Y; Feng L; Zhang C; Wisniewski C; Zhou Q
    Water Res; 2010 Jun; 44(11):3329-36. PubMed ID: 20371095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Efficiency Recovery of Acetic Acid from Water Using Electroactive Gas-Stripping Membranes.
    Im S; Jung B; Wang X; Wu J; Xiao M; Chen X; Quezada-Renteria JA; Iddya A; Dlamini D; Lu S; Maravelias CT; Ren ZJ; Hoek EMV; Jassby D
    Environ Sci Technol; 2023 Jul; 57(27):10096-10106. PubMed ID: 37368842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of pH on anaerobic fermentation of primary sludge at room temperature.
    Wu H; Yang D; Zhou Q; Song Z
    J Hazard Mater; 2009 Dec; 172(1):196-201. PubMed ID: 19643539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of food waste hydrolysis in leach bed coupled with methanogenic reactor: effect of pH and bulking agent.
    Xu SY; Lam HP; Karthikeyan OP; Wong JW
    Bioresour Technol; 2011 Feb; 102(4):3702-8. PubMed ID: 21195606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using enriched cultures for elevation of anaerobic syntrophic interactions between acetogens and methanogens in a high-load continuous digester.
    Amani T; Nosrati M; Mousavi SM
    Bioresour Technol; 2011 Feb; 102(4):3716-23. PubMed ID: 21186121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Food waste decomposition in leachbed reactor: role of neutralizing solutions on the leachate quality.
    Selvam A; Xu SY; Gu XY; Wong JW
    Bioresour Technol; 2010 Mar; 101(6):1707-14. PubMed ID: 19932958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Separation of Acetic and Hexanoic Acids across Polymer Inclusion Membrane with Ionic Liquids as Carrier.
    Wang BY; Zhang N; Li ZY; Lang QL; Yan BH; Liu Y; Zhang Y
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31408956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of naturally generated volatile fatty acids for herbicide removal via denitrification.
    He X; Wareham DG
    J Environ Sci Health B; 2009 Mar; 44(3):302-10. PubMed ID: 19280484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevention of volatile fatty acids production and limitation of odours from winery wastewaters by denitrification.
    Bories A; Guillot JM; Sire Y; Couderc M; Lemaire SA; Kreim V; Roux JC
    Water Res; 2007 Jul; 41(13):2987-95. PubMed ID: 17467770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of change in volatile fatty acid (VFA) composition on methanogenic upflow filter reactor (UFAF) performance.
    Demirel B; Yenigün O
    Environ Technol; 2002 Oct; 23(10):1179-87. PubMed ID: 12465844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of volatile fatty acids with immobilized Rhodococcus sp. B261.
    Yun SI; Ohta Y
    Bioresour Technol; 2005 Jan; 96(1):41-6. PubMed ID: 15364078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of membrane processes for the removal of volatile fatty acids.
    Barnes S; Dalhoff R; Keller J; Wilderer P; Kendall L
    Water Sci Technol; 2003; 47(12):191-8. PubMed ID: 12926688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors.
    Xu Q; Tian Y; Wang S; Ko JH
    Waste Manag; 2015 Jul; 41():94-100. PubMed ID: 25857421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.