BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 24569053)

  • 1. Characterisation of the active/de-active transition of mitochondrial complex I.
    Babot M; Birch A; Labarbuta P; Galkin A
    Biochim Biophys Acta; 2014 Jul; 1837(7):1083-92. PubMed ID: 24569053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ND3, ND1 and 39kDa subunits are more exposed in the de-active form of bovine mitochondrial complex I.
    Babot M; Labarbuta P; Birch A; Kee S; Fuszard M; Botting CH; Wittig I; Heide H; Galkin A
    Biochim Biophys Acta; 2014 Jun; 1837(6):929-39. PubMed ID: 24560811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanism and physiological role of active-deactive transition of mitochondrial complex I.
    Babot M; Galkin A
    Biochem Soc Trans; 2013 Oct; 41(5):1325-30. PubMed ID: 24059527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ischemic A/D transition of mitochondrial complex I and its role in ROS generation.
    Dröse S; Stepanova A; Galkin A
    Biochim Biophys Acta; 2016 Jul; 1857(7):946-57. PubMed ID: 26777588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuation of oxidative damage by targeting mitochondrial complex I in neonatal hypoxic-ischemic brain injury.
    Kim M; Stepanova A; Niatsetskaya Z; Sosunov S; Arndt S; Murphy MP; Galkin A; Ten VS
    Free Radic Biol Med; 2018 Aug; 124():517-524. PubMed ID: 30037775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational change of mitochondrial complex I increases ROS sensitivity during ischemia.
    Gorenkova N; Robinson E; Grieve DJ; Galkin A
    Antioxid Redox Signal; 2013 Nov; 19(13):1459-68. PubMed ID: 23419200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ND3 Cys39 in complex I is exposed during mitochondrial respiration.
    Burger N; James AM; Mulvey JF; Hoogewijs K; Ding S; Fearnley IM; Loureiro-López M; Norman AAI; Arndt S; Mottahedin A; Sauchanka O; Hartley RC; Krieg T; Murphy MP
    Cell Chem Biol; 2022 Apr; 29(4):636-649.e14. PubMed ID: 34739852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex I.
    Galkin A; Meyer B; Wittig I; Karas M; Schägger H; Vinogradov A; Brandt U
    J Biol Chem; 2008 Jul; 283(30):20907-13. PubMed ID: 18502755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformation-specific crosslinking of mitochondrial complex I.
    Ciano M; Fuszard M; Heide H; Botting CH; Galkin A
    FEBS Lett; 2013 Apr; 587(7):867-72. PubMed ID: 23454639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis reveals ginsenoside Rb1 attenuates myocardial ischemia/reperfusion injury through inhibiting ROS production from mitochondrial complex I.
    Jiang L; Yin X; Chen YH; Chen Y; Jiang W; Zheng H; Huang FQ; Liu B; Zhou W; Qi LW; Li J
    Theranostics; 2021; 11(4):1703-1720. PubMed ID: 33408776
    [No Abstract]   [Full Text] [Related]  

  • 11. Structure and function of mitochondrial complex I.
    Wirth C; Brandt U; Hunte C; Zickermann V
    Biochim Biophys Acta; 2016 Jul; 1857(7):902-14. PubMed ID: 26921811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.
    Dröse S; Brandt U; Wittig I
    Biochim Biophys Acta; 2014 Aug; 1844(8):1344-54. PubMed ID: 24561273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain Ischemia/Reperfusion Injury and Mitochondrial Complex I Damage.
    Galkin A
    Biochemistry (Mosc); 2019 Nov; 84(11):1411-1423. PubMed ID: 31760927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of oxygen deactivates mitochondrial complex I: implications for ischemic injury?
    Galkin A; Abramov AY; Frakich N; Duchen MR; Moncada S
    J Biol Chem; 2009 Dec; 284(52):36055-36061. PubMed ID: 19861410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox-Dependent Loss of Flavin by Mitochondrial Complex I in Brain Ischemia/Reperfusion Injury.
    Stepanova A; Sosunov S; Niatsetskaya Z; Konrad C; Starkov AA; Manfredi G; Wittig I; Ten V; Galkin A
    Antioxid Redox Signal; 2019 Sep; 31(9):608-622. PubMed ID: 31037949
    [No Abstract]   [Full Text] [Related]  

  • 16. Oxidation of NADH and ROS production by respiratory complex I.
    Vinogradov AD; Grivennikova VG
    Biochim Biophys Acta; 2016 Jul; 1857(7):863-71. PubMed ID: 26571336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoflurane modulates cardiac mitochondrial bioenergetics by selectively attenuating respiratory complexes.
    Agarwal B; Dash RK; Stowe DF; Bosnjak ZJ; Camara AK
    Biochim Biophys Acta; 2014 Mar; 1837(3):354-65. PubMed ID: 24355434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pinpoint Dual Chemical Cross-Linking Explores the Structural Dynamics of the Ubiquinone Reaction Site in Mitochondrial Complex I.
    Masuya T; Uno S; Murai M; Miyoshi H
    Biochemistry; 2021 Mar; 60(10):813-824. PubMed ID: 33650850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S-nitrosation of mitochondrial complex I depends on its structural conformation.
    Galkin A; Moncada S
    J Biol Chem; 2007 Dec; 282(52):37448-53. PubMed ID: 17956863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mitochondrial-encoded subunits of respiratory complex I (NADH:ubiquinone oxidoreductase): identifying residues important in mechanism and disease.
    Bridges HR; Birrell JA; Hirst J
    Biochem Soc Trans; 2011 Jun; 39(3):799-806. PubMed ID: 21599651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.