BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 24569076)

  • 1. Dimethyl fumarate inhibits the expression and function of hypoxia-inducible factor-1α (HIF-1α).
    Zhao G; Liu Y; Fang J; Chen Y; Li H; Gao K
    Biochem Biophys Res Commun; 2014 Jun; 448(3):303-7. PubMed ID: 24569076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATF4 promotes bone angiogenesis by increasing VEGF expression and release in the bone environment.
    Zhu K; Jiao H; Li S; Cao H; Galson DL; Zhao Z; Zhao X; Lai Y; Fan J; Im HJ; Chen D; Xiao G
    J Bone Miner Res; 2013 Sep; 28(9):1870-1884. PubMed ID: 23649506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis.
    Lum JJ; Bui T; Gruber M; Gordan JD; DeBerardinis RJ; Covello KL; Simon MC; Thompson CB
    Genes Dev; 2007 May; 21(9):1037-49. PubMed ID: 17437992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of Protein Kinase R in Double-Stranded RNA-Induced Proteasomal Degradation of Hypoxia Inducible Factor-1α.
    Hotani T; Nakagawa K; Tsukamoto T; Mizuguchi H; Sakurai F
    Inflammation; 2023 Dec; 46(6):2332-2342. PubMed ID: 37615898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UFM1 inhibits hypoxia-induced angiogenesis via promoting proteasome degradation of HIF-1α.
    Jing Y; Ye K; Zhang G; Zhu J; Mao Z; Zhang Q; Chen F
    Mol Cell Biochem; 2024 May; ():. PubMed ID: 38722467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential mediation of hypoxia-inducible factor-1α in heat shock protein 27 translocations, caspase-3 and calpain activities and yak meat tenderness during postmortem aging.
    Zhu X; Dingkao R; Sun N; Han L; Yu Q
    Meat Sci; 2023 Oct; 204():109264. PubMed ID: 37515863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxycarboxylic acid receptor 2 mediates dimethyl fumarate's protective effect in EAE.
    Chen H; Assmann JC; Krenz A; Rahman M; Grimm M; Karsten CM; Köhl J; Offermanns S; Wettschureck N; Schwaninger M
    J Clin Invest; 2014 May; 124(5):2188-92. PubMed ID: 24691444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dimethyl fumarate and monoethyl fumarate exhibit differential effects on KEAP1, NRF2 activation, and glutathione depletion in vitro.
    Brennan MS; Matos MF; Li B; Hronowski X; Gao B; Juhasz P; Rhodes KJ; Scannevin RH
    PLoS One; 2015; 10(3):e0120254. PubMed ID: 25793262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimethyl Fumarate and Intestine: From Main Suspect to Potential Ally against Gut Disorders.
    Manai F; Zanoletti L; Arfini D; Micco SG; Gjyzeli A; Comincini S; Amadio M
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Challenge of Dimethyl Fumarate Repurposing in Eye Pathologies.
    Manai F; Govoni S; Amadio M
    Cells; 2022 Dec; 11(24):. PubMed ID: 36552824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lymphocyte Counts and Multiple Sclerosis Therapeutics: Between Mechanisms of Action and Treatment-Limiting Side Effects.
    Fischer S; Proschmann U; Akgün K; Ziemssen T
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Experimental Therapies for Treatment of Pulmonary Arterial Hypertension.
    Zolty R
    J Exp Pharmacol; 2021; 13():817-857. PubMed ID: 34429666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attenuation of High Glucose-Induced Damage in RPE Cells through p38 MAPK Signaling Pathway Inhibition.
    Maugeri G; Bucolo C; Drago F; Rossi S; Di Rosa M; Imbesi R; D'Agata V; Giunta S
    Front Pharmacol; 2021; 12():684680. PubMed ID: 34025440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calming the (Cytokine) Storm: Dimethyl Fumarate as a Therapeutic Candidate for COVID-19.
    Timpani CA; Rybalka E
    Pharmaceuticals (Basel); 2020 Dec; 14(1):. PubMed ID: 33375288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting T Cell Metabolism in Inflammatory Skin Disease.
    von Meyenn L; Bertschi NL; Schlapbach C
    Front Immunol; 2019; 10():2285. PubMed ID: 31608068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mononuclear cell transcriptome changes associated with dimethyl fumarate in MS.
    Gafson AR; Kim K; Cencioni MT; van Hecke W; Nicholas R; Baranzini SE; Matthews PM
    Neurol Neuroimmunol Neuroinflamm; 2018 Jul; 5(4):e470. PubMed ID: 30283812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox Signaling by Reactive Electrophiles and Oxidants.
    Parvez S; Long MJC; Poganik JR; Aye Y
    Chem Rev; 2018 Sep; 118(18):8798-8888. PubMed ID: 30148624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic Dysfunction and Peroxisome Proliferator-Activated Receptors (PPAR) in Multiple Sclerosis.
    Ferret-Sena V; Capela C; Sena A
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29865151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimethyl Fumarate ameliorates pulmonary arterial hypertension and lung fibrosis by targeting multiple pathways.
    Grzegorzewska AP; Seta F; Han R; Czajka CA; Makino K; Stawski L; Isenberg JS; Browning JL; Trojanowska M
    Sci Rep; 2017 Feb; 7():41605. PubMed ID: 28150703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimethyl Fumarate Reduces Inflammatory Responses in Experimental Colitis.
    Casili G; Cordaro M; Impellizzeri D; Bruschetta G; Paterniti I; Cuzzocrea S; Esposito E
    J Crohns Colitis; 2016 Apr; 10(4):472-83. PubMed ID: 26690241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.