These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 24569278)
1. The water footprint of Milan. Vanham D; Bidoglio G Water Sci Technol; 2014; 69(4):789-95. PubMed ID: 24569278 [TBL] [Abstract][Full Text] [Related]
2. The water footprint of Austria for different diets. Vanham D Water Sci Technol; 2013; 67(4):824-30. PubMed ID: 23306261 [TBL] [Abstract][Full Text] [Related]
3. Potential water saving through changes in European diets. Vanham D; Hoekstra AY; Bidoglio G Environ Int; 2013 Nov; 61():45-56. PubMed ID: 24096041 [TBL] [Abstract][Full Text] [Related]
4. Cities as hotspots of indirect water consumption: The case study of Hong Kong. Vanham D; Gawlik BM; Bidoglio G J Hydrol (Amst); 2019 Jun; 573():1075-1086. PubMed ID: 31293281 [TBL] [Abstract][Full Text] [Related]
5. Water consumption related to different diets in Mediterranean cities. Vanham D; Del Pozo S; Pekcan AG; Keinan-Boker L; Trichopoulou A; Gawlik BM Sci Total Environ; 2016 Dec; 573():96-105. PubMed ID: 27552733 [TBL] [Abstract][Full Text] [Related]
6. Urban food consumption and associated water resources: The example of Dutch cities. Vanham D; Mak TN; Gawlik BM Sci Total Environ; 2016 Sep; 565():232-239. PubMed ID: 27173841 [TBL] [Abstract][Full Text] [Related]
7. The Water Footprint of Diets: A Global Systematic Review and Meta-analysis. Harris F; Moss C; Joy EJM; Quinn R; Scheelbeek PFD; Dangour AD; Green R Adv Nutr; 2020 Mar; 11(2):375-386. PubMed ID: 31756252 [TBL] [Abstract][Full Text] [Related]
8. Effects of different Danish food consumption patterns on Water ScarcityFootprint. Zucchinelli M; Sporchia F; Piva M; Thomsen M; Lamastra L; Caro D J Environ Manage; 2021 Dec; 300():113713. PubMed ID: 34547567 [TBL] [Abstract][Full Text] [Related]
9. Toxicity assessment strategies, data requirements, and risk assessment approaches to derive health based guidance values for non-relevant metabolites of plant protection products. Dekant W; Melching-Kollmuss S; Kalberlah F Regul Toxicol Pharmacol; 2010 Mar; 56(2):135-42. PubMed ID: 19883711 [TBL] [Abstract][Full Text] [Related]
10. [Nitrate contamination of the groundwater of the Akkar Plain in northern Lebanon]. Halwani J; Baroudi BO; Wartel M Sante; 1999; 9(4):219-23. PubMed ID: 10623868 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the influence on water consumption and water scarcity of different healthy diet scenarios. Zucchinelli M; Spinelli R; Corrado S; Lamastra L J Environ Manage; 2021 Aug; 291():112687. PubMed ID: 33934023 [TBL] [Abstract][Full Text] [Related]
12. The real water consumption behind drinking water: the case of Italy. Niccolucci V; Botto S; Rugani B; Nicolardi V; Bastianoni S; Gaggi C J Environ Manage; 2011 Oct; 92(10):2611-8. PubMed ID: 21741755 [TBL] [Abstract][Full Text] [Related]
13. Mediterranean diet and reduction in the risk of a first acute myocardial infarction: an operational healthy dietary score. Martínez-González MA; Fernández-Jarne E; Serrano-Martínez M; Marti A; Martinez JA; Martín-Moreno JM Eur J Nutr; 2002 Aug; 41(4):153-60. PubMed ID: 12242583 [TBL] [Abstract][Full Text] [Related]
14. Short communication: The water footprint of dairy products: case study involving skim milk powder. Ridoutt BG; Williams SR; Baud S; Fraval S; Marks N J Dairy Sci; 2010 Nov; 93(11):5114-7. PubMed ID: 20965326 [TBL] [Abstract][Full Text] [Related]
15. Applying the input-output method to account for water footprint and virtual water trade in the Haihe River basin in China. Zhao X; Yang H; Yang Z; Chen B; Qin Y Environ Sci Technol; 2010 Dec; 44(23):9150-6. PubMed ID: 20945890 [TBL] [Abstract][Full Text] [Related]
16. Presence of arsenic in agricultural products from arsenic-endemic areas and strategies to reduce arsenic intake in rural villages. Carbonell-Barrachina AA; Signes-Pastor AJ; Vázquez-Araújo L; Burló F; Sengupta B Mol Nutr Food Res; 2009 May; 53(5):531-41. PubMed ID: 19382147 [TBL] [Abstract][Full Text] [Related]
17. Risk of arsenic exposure from drinking water and dietary components: implications for risk management in rural Bengal. Halder D; Bhowmick S; Biswas A; Chatterjee D; Nriagu J; Guha Mazumder DN; Šlejkovec Z; Jacks G; Bhattacharya P Environ Sci Technol; 2013 Jan; 47(2):1120-7. PubMed ID: 23198808 [TBL] [Abstract][Full Text] [Related]
18. Diet of two rural population groups of middle-aged men in Italy. Fidanza AA; Seccareccia F; Torsello S; Fidanza F Int J Vitam Nutr Res; 1988; 58(4):442-51. PubMed ID: 3243698 [TBL] [Abstract][Full Text] [Related]
19. Application of the "threshold of toxicological concern" to derive tolerable concentrations of "non-relevant metabolites" formed from plant protection products in ground and drinking water. Melching-Kollmuss S; Dekant W; Kalberlah F Regul Toxicol Pharmacol; 2010 Mar; 56(2):126-34. PubMed ID: 19766683 [TBL] [Abstract][Full Text] [Related]
20. Toxicology and carcinogenesis studies of sodium dichromate dihydrate (Cas No. 7789-12-0) in F344/N rats and B6C3F1 mice (drinking water studies). National Toxicology Program Natl Toxicol Program Tech Rep Ser; 2008 Jul; (546):1-192. PubMed ID: 18716633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]