These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 24569675)
1. Electron uptake by iron-oxidizing phototrophic bacteria. Bose A; Gardel EJ; Vidoudez C; Parra EA; Girguis PR Nat Commun; 2014 Feb; 5():3391. PubMed ID: 24569675 [TBL] [Abstract][Full Text] [Related]
2. Photoferrotrophs Produce a PioAB Electron Conduit for Extracellular Electron Uptake. Gupta D; Sutherland MC; Rengasamy K; Meacham JM; Kranz RG; Bose A mBio; 2019 Nov; 10(6):. PubMed ID: 31690680 [TBL] [Abstract][Full Text] [Related]
3. Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris. Guzman MS; Rengasamy K; Binkley MM; Jones C; Ranaivoarisoa TO; Singh R; Fike DA; Meacham JM; Bose A Nat Commun; 2019 Mar; 10(1):1355. PubMed ID: 30902976 [TBL] [Abstract][Full Text] [Related]
4. An insoluble iron complex coated cathode enhances direct electron uptake by Rhodopseudomonas palustris TIE-1. Rengasamy K; Ranaivoarisoa T; Singh R; Bose A Bioelectrochemistry; 2018 Aug; 122():164-173. PubMed ID: 29655035 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of RuBisCO form I and II genes in Ranaivoarisoa TO; Bai W; Karthikeyan R; Steele H; Silberman M; Olabode J; Conners E; Gallagher B; Bose A Appl Environ Microbiol; 2024 Sep; 90(9):e0143824. PubMed ID: 39162566 [TBL] [Abstract][Full Text] [Related]
6. Genetic Redundancy in Iron and Manganese Transport in the Metabolically Versatile Bacterium Rhodopseudomonas palustris TIE-1. Singh R; Ranaivoarisoa TO; Gupta D; Bai W; Bose A Appl Environ Microbiol; 2020 Aug; 86(16):. PubMed ID: 32503905 [TBL] [Abstract][Full Text] [Related]
7. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Byrne JM; Klueglein N; Pearce C; Rosso KM; Appel E; Kappler A Science; 2015 Mar; 347(6229):1473-6. PubMed ID: 25814583 [TBL] [Abstract][Full Text] [Related]
8. Extracellular electron uptake for CO Sun C; Yu Q; Zhao Z; Zhang Y Sci Total Environ; 2022 Nov; 849():157864. PubMed ID: 35934039 [TBL] [Abstract][Full Text] [Related]
9. Redox Regulation of a Light-Harvesting Antenna Complex in an Anoxygenic Phototroph. Fixen KR; Oda Y; Harwood CS mBio; 2019 Nov; 10(6):. PubMed ID: 31772049 [TBL] [Abstract][Full Text] [Related]
10. Regulation of the phototrophic iron oxidation (pio) genes in Rhodopseudomonas palustris TIE-1 is mediated by the global regulator, FixK. Bose A; Newman DK Mol Microbiol; 2011 Jan; 79(1):63-75. PubMed ID: 21166894 [TBL] [Abstract][Full Text] [Related]
11. Nonredundant roles for cytochrome c2 and two high-potential iron-sulfur proteins in the photoferrotroph Rhodopseudomonas palustris TIE-1. Bird LJ; Saraiva IH; Park S; Calçada EO; Salgueiro CA; Nitschke W; Louro RO; Newman DK J Bacteriol; 2014 Feb; 196(4):850-8. PubMed ID: 24317397 [TBL] [Abstract][Full Text] [Related]
13. His/Met heme ligation in the PioA outer membrane cytochrome enabling light-driven extracellular electron transfer by Rhodopseudomonas palustris TIE-1. Li DB; Edwards MJ; Blake AW; Newton-Payne SE; Piper SEH; Jenner LP; Sokol KP; Reisner E; Van Wonderen JH; Clarke TA; Butt JN Nanotechnology; 2020 Aug; 31(35):354002. PubMed ID: 32403091 [TBL] [Abstract][Full Text] [Related]
14. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. Jiao Y; Newman DK J Bacteriol; 2007 Mar; 189(5):1765-73. PubMed ID: 17189359 [TBL] [Abstract][Full Text] [Related]
15. Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. McKinlay JB; Harwood CS Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11669-75. PubMed ID: 20558750 [TBL] [Abstract][Full Text] [Related]
16. Towards sustainable bioplastic production using the photoautotrophic bacterium Rhodopseudomonas palustris TIE-1. Ranaivoarisoa TO; Singh R; Rengasamy K; Guzman MS; Bose A J Ind Microbiol Biotechnol; 2019 Oct; 46(9-10):1401-1417. PubMed ID: 30927110 [TBL] [Abstract][Full Text] [Related]
17. Differential accumulation of form I RubisCO in Rhodopseudomonas palustris CGA010 under Photoheterotrophic growth conditions with reduced carbon sources. Joshi GS; Romagnoli S; Verberkmoes NC; Hettich RL; Pelletier D; Tabita FR J Bacteriol; 2009 Jul; 191(13):4243-50. PubMed ID: 19376869 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Jiao Y; Kappler A; Croal LR; Newman DK Appl Environ Microbiol; 2005 Aug; 71(8):4487-96. PubMed ID: 16085840 [TBL] [Abstract][Full Text] [Related]
19. A novel three-protein two-component system provides a regulatory twist on an established circuit to modulate expression of the cbbI region of Rhodopseudomonas palustris CGA010. Romagnoli S; Tabita FR J Bacteriol; 2006 Apr; 188(8):2780-91. PubMed ID: 16585739 [TBL] [Abstract][Full Text] [Related]