These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24570323)

  • 1. Phosphate-independent utilization of phosphonoacetic acid as sole phosphorus source by a psychrophilic strain of Geomyces pannorum P15.
    Klimek-Ochab M
    Folia Microbiol (Praha); 2014 Sep; 59(5):375-80. PubMed ID: 24570323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2-Aminoethylphosphonate utilization by the cold-adapted Geomyces pannorum P11 strain.
    Klimek-Ochab M; Mucha A; Zymańczyk-Duda E
    Curr Microbiol; 2014 Mar; 68(3):330-5. PubMed ID: 24162513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A metal-independent hydrolase from a Penicillium oxalicum strain able to use phosphonoacetic acid as the only phosphorus source.
    Klimek-Ochab M; Lejczak B; Forlani G
    FEMS Microbiol Lett; 2003 May; 222(2):205-9. PubMed ID: 12770709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphonoacetic acid utilization by fungal isolates: occurrence and properties of a phosphonoacetate hydrolase in some penicillia.
    Forlani G; Klimek-Ochab M; Jaworski J; Lejczak B; Picco AM
    Mycol Res; 2006 Dec; 110(Pt 12):1455-63. PubMed ID: 17123811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The utilization of 4-aminobutylphosphonate as sole nitrogen source by a strain of Kluyveromyces fragilis.
    Ternan NG; McMullan G
    FEMS Microbiol Lett; 2000 Mar; 184(2):237-40. PubMed ID: 10713427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of carbon-phosphorus lyase activity in cell free extracts of Enterobacter aerogenes.
    Murata K; Higaki N; Kimura A
    Biochem Biophys Res Commun; 1988 Nov; 157(1):190-5. PubMed ID: 3196331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro characterization of a phosphate starvation-independent carbon-phosphorus bond cleavage activity in Pseudomonas fluorescens 23F.
    McMullan G; Quinn JP
    J Bacteriol; 1994 Jan; 176(2):320-4. PubMed ID: 8288524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role for carbon catabolite repression in the metabolism of phosphonoacetate by Agromyces fucosus Vs2.
    O'Loughlin SN; Graham RL; McMullan G; Ternan NG
    FEMS Microbiol Lett; 2006 Aug; 261(1):133-40. PubMed ID: 16842370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of a novel carbon-phosphorus bond cleavage activity in cell-free extracts of an environmental Pseudomonas fluorescens isolate.
    McMullan G; Quinn JP
    Biochem Biophys Res Commun; 1992 Apr; 184(2):1022-7. PubMed ID: 1575721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capability of Penicillium oxalicum y2 to release phosphate from different insoluble phosphorus sources and soil.
    Wang J; Zhao YG; Maqbool F
    Folia Microbiol (Praha); 2021 Feb; 66(1):69-77. PubMed ID: 32939738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds.
    Krzyśko-Lupicka T; Strof W; Kubś K; Skorupa M; Wieczorek P; Lejczak B; Kafarski P
    Appl Microbiol Biotechnol; 1997 Oct; 48(4):549-52. PubMed ID: 9390463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutritional influences on the solubilization of metal phosphate by ericoid mycorrhizal fungi.
    Gibson BR; Mitchell DT
    Mycol Res; 2004 Aug; 108(Pt 8):947-54. PubMed ID: 15449600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Growth of the yeast Geomyces pannorum under anaerobic conditions].
    Shcherbakov BA; Kochkina GA; Ivanushkina NE; Laurinavichus KS; Ozerskaia SM; Akimenko VK
    Mikrobiologiia; 2010; 79(6):848-51. PubMed ID: 21774171
    [No Abstract]   [Full Text] [Related]  

  • 14. [Physiological role of inorganic polyphosphates in Endomyces magnusii].
    Kulaev IS; Afanas'eva TP
    Dokl Akad Nauk SSSR; 1970 May; 192(3):668-71. PubMed ID: 5469678
    [No Abstract]   [Full Text] [Related]  

  • 15. Organophosphonate utilization by the wild-type strain of Pseudomonas fluorescens.
    Zboińska E; Lejczak B; Kafarski P
    Appl Environ Microbiol; 1992 Sep; 58(9):2993-9. PubMed ID: 1444412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphine and methane generation by the addition of organic compounds containing carbon-phosphorus bonds into incubated soil.
    Han SH; Zhuang YH; Zhang HX; Wang ZJ; Yang JZ
    Chemosphere; 2002 Nov; 49(6):651-7. PubMed ID: 12430652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A
    Elfenbein JR; Knodler LA; Schaeffer AR; Faber F; Bäumler AJ; Andrews-Polymenis HL
    Front Cell Infect Microbiol; 2017; 7():69. PubMed ID: 28361036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triacylglyceride composition and fatty acyl saturation profile of a psychrophilic and psychrotolerant fungal species grown at different temperatures.
    Pannkuk EL; Blair HB; Fischer AE; Gerdes CL; Gilmore DF; Savary BJ; Risch TS
    Fungal Biol; 2014; 118(9-10):792-9. PubMed ID: 25209638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate starvation-independent 2-aminoethylphosphonic acid biodegradation in a newly isolated strain of Pseudomonas putida, NG2.
    Ternan NG; Quinn JP
    Syst Appl Microbiol; 1998 Aug; 21(3):346-52. PubMed ID: 9841125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Lipid synthesis by Geomyces pannorum under the impact of stress factors].
    Konova IV; Sergeeva IaE; Galanina LA; Kochkina GA; Ivanushkina NE; Ozerskaia SM
    Mikrobiologiia; 2009; 78(1):52-8. PubMed ID: 19334597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.