These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 24570350)

  • 21. Front-back confusion resolution in three-dimensional sound localization using databases built with a dummy head.
    Ovcharenko A; Cho SJ; Chong UP
    J Acoust Soc Am; 2007 Jul; 122(1):489-95. PubMed ID: 17614506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of speech discrimination in noise and directional hearing with 2 different sound processors of a bone-anchored hearing system in adults with unilateral severe or profound sensorineural hearing loss.
    Wesarg T; Aschendorff A; Laszig R; Beck R; Schild C; Hassepass F; Kroeger S; Hocke T; Arndt S
    Otol Neurotol; 2013 Aug; 34(6):1064-70. PubMed ID: 23856626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High binaural coherence determines successful sound localization and increased activity in posterior auditory areas.
    Zimmer U; Macaluso E
    Neuron; 2005 Sep; 47(6):893-905. PubMed ID: 16157283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of environmental sounds with varying spectral resolution.
    Shafiro V
    Ear Hear; 2008 Jun; 29(3):401-20. PubMed ID: 18344871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective filtering to spurious localization cues in the mammalian auditory brainstem.
    Meffin H; Grothe B
    J Acoust Soc Am; 2009 Nov; 126(5):2437-54. PubMed ID: 19894825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acoustic cues underlying auditory distance in barn owls.
    Kim DO; Moiseff A; Turner JB; Gull J
    Acta Otolaryngol; 2008 Apr; 128(4):382-7. PubMed ID: 18368570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sound localization by human listeners.
    Middlebrooks JC; Green DM
    Annu Rev Psychol; 1991; 42():135-59. PubMed ID: 2018391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of aging and interaural delay on the detection of a break in the interaural correlation between two sounds.
    Li L; Huang J; Wu X; Qi JG; Schneider BA
    Ear Hear; 2009 Apr; 30(2):273-86. PubMed ID: 19194287
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hierarchical processing of sound location and motion in the human brainstem and planum temporale.
    Krumbholz K; Schönwiesner M; Rübsamen R; Zilles K; Fink GR; von Cramon DY
    Eur J Neurosci; 2005 Jan; 21(1):230-8. PubMed ID: 15654860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sound localization in noise and sensitivity to spectral shape.
    Andéol G; Macpherson EA; Sabin AT
    Hear Res; 2013 Oct; 304():20-7. PubMed ID: 23769958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaural timing cues do not contribute to the map of space in the ferret superior colliculus: a virtual acoustic space study.
    Campbell RA; Doubell TP; Nodal FR; Schnupp JW; King AJ
    J Neurophysiol; 2006 Jan; 95(1):242-54. PubMed ID: 16162823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relative influence of interaural time and intensity differences on lateralization is modulated by attention to one or the other cue.
    Lang AG; Buchner A
    J Acoust Soc Am; 2008 Nov; 124(5):3120-31. PubMed ID: 19045797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of auditory localization accuracy and auditory spatial discrimination in children and adolescents.
    Kühnle S; Ludwig AA; Meuret S; Küttner C; Witte C; Scholbach J; Fuchs M; Rübsamen R
    Audiol Neurootol; 2013; 18(1):48-62. PubMed ID: 23095333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of interaural level differences improves sound localization in bimodal hearing.
    Francart T; Lenssen A; Wouters J
    J Acoust Soc Am; 2011 Nov; 130(5):2817-26. PubMed ID: 22087910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural cross-correlation and signal decorrelation: insights into coding of auditory space.
    Saberi K; Petrosyan A
    J Theor Biol; 2005 Jul; 235(1):45-56. PubMed ID: 15833312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visualization of functional count-comparison-based binaural auditory model output.
    Takanen M; Santala O; Pulkki V
    Hear Res; 2014 Mar; 309():147-63. PubMed ID: 24513586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Localization of complex sounds is modulated by behavioral relevance and sound category.
    Derey K; Rauschecker JP; Formisano E; Valente G; de Gelder B
    J Acoust Soc Am; 2017 Oct; 142(4):1757. PubMed ID: 29092572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discovering acoustic structure of novel sounds.
    Stilp CE; Kiefte M; Kluender KR
    J Acoust Soc Am; 2018 Apr; 143(4):2460. PubMed ID: 29716264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of interaural-level-difference fluctuations on the externalization of sound.
    Catic J; Santurette S; Buchholz JM; Gran F; Dau T
    J Acoust Soc Am; 2013 Aug; 134(2):1232-41. PubMed ID: 23927121
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Perceived Target Range Shapes Human Sound-Localization Behavior.
    Ege R; Van Opstal AJ; Van Wanrooij MM
    eNeuro; 2019; 6(2):. PubMed ID: 30963103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.