BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24570352)

  • 1. Learning robotic eye-arm-hand coordination from human demonstration: a coupled dynamical systems approach.
    Lukic L; Santos-Victor J; Billard A
    Biol Cybern; 2014 Apr; 108(2):223-48. PubMed ID: 24570352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning visuomotor transformations for gaze-control and grasping.
    Hoffmann H; Schenck W; Möller R
    Biol Cybern; 2005 Aug; 93(2):119-30. PubMed ID: 16028074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A bio-inspired kinematic controller for obstacle avoidance during reaching tasks with real robots.
    Srinivasa N; Bhattacharyya R; Sundareswara R; Lee C; Grossberg S
    Neural Netw; 2012 Nov; 35():54-69. PubMed ID: 22954479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Obstacle avoidance during online corrections.
    Chapman CS; Goodale MA
    J Vis; 2010 Sep; 10(11):17. PubMed ID: 20884512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Integrated Framework for Human-Robot Collaborative Manipulation.
    Sheng W; Thobbi A; Gu Y
    IEEE Trans Cybern; 2015 Oct; 45(10):2030-41. PubMed ID: 25373136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Gaze Position on Reaching Movements in an Obstacle Avoidance Task.
    Ross AI; Schenk T; Hesse C
    PLoS One; 2015; 10(12):e0144193. PubMed ID: 26636966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eye-hand coordination: memory-guided grasping during obstacle avoidance.
    Abbas HH; Langridge RW; Marotta JJ
    Exp Brain Res; 2022 Feb; 240(2):453-466. PubMed ID: 34787684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinated flexibility: how initial gaze position modulates eye-hand coordination and reaching.
    Adam JJ; Buetti S; Kerzel D
    J Exp Psychol Hum Percept Perform; 2012 Aug; 38(4):891-901. PubMed ID: 22390297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Object grasping using the minimum variance model.
    Simmons G; Demiris Y
    Biol Cybern; 2006 May; 94(5):393-407. PubMed ID: 16479397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3-D-Gaze-Based Robotic Grasping Through Mimicking Human Visuomotor Function for People With Motion Impairments.
    Li S; Zhang X; Webb JD
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2824-2835. PubMed ID: 28278455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-development of manner and path concepts in language, action, and eye-gaze behavior.
    Lohan KS; Griffiths SS; Sciutti A; Partmann TC; Rohlfing KJ
    Top Cogn Sci; 2014 Jul; 6(3):492-512. PubMed ID: 24934106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eye-hand coordination in on-line visuomotor adjustments.
    Abekawa N; Inui T; Gomi H
    Neuroreport; 2014 May; 25(7):441-5. PubMed ID: 24346260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hand-eye coordination during sequential tasks.
    Ballard DH; Hayhoe MM; Li F; Whitehead SD
    Philos Trans R Soc Lond B Biol Sci; 1992 Sep; 337(1281):331-8; discussion 338-9. PubMed ID: 1359587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visuomotor transformations for eye-hand coordination.
    Henriques DY; Medendorp WP; Khan AZ; Crawford JD
    Prog Brain Res; 2002; 140():329-40. PubMed ID: 12508600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speeded reaching movements around invisible obstacles.
    Hudson TE; Wolfe U; Maloney LT
    PLoS Comput Biol; 2012; 8(9):e1002676. PubMed ID: 23028276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fuzzy integral-based gaze control architecture incorporated with modified-univector field-based navigation for humanoid robots.
    Yoo JK; Kim JH
    IEEE Trans Syst Man Cybern B Cybern; 2012 Feb; 42(1):125-39. PubMed ID: 21878418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perception through visuomotor anticipation in a mobile robot.
    Hoffmann H
    Neural Netw; 2007 Jan; 20(1):22-33. PubMed ID: 17010571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visually guided gait modifications for stepping over an obstacle: a bio-inspired approach.
    Silva P; Matos V; Santos CP
    Biol Cybern; 2014 Feb; 108(1):103-19. PubMed ID: 24469319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism.
    Liu Z; Chen C; Zhang Y; Chen CL
    IEEE Trans Cybern; 2015 Mar; 45(3):521-32. PubMed ID: 24968367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensorimotor coordination in a "baby" robot: learning about objects through grasping.
    Natale L; Orabona F; Metta G; Sandini G
    Prog Brain Res; 2007; 164():403-24. PubMed ID: 17920444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.