BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24571089)

  • 1. Possible benefits of catheters with lateral holes in coronary thrombus aspiration: a computational study for different clot viscosities and vacuum pressures.
    Soleimani S; Dubini G; Pennati G
    Artif Organs; 2014 Oct; 38(10):845-55. PubMed ID: 24571089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of thrombus aspiration in two realistic models of catheter tips.
    Pennati G; Balossino R; Dubini G; Migliavacca F
    Artif Organs; 2010 Apr; 34(4):301-10. PubMed ID: 20420612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large tube section is the key to successful coronary thrombus aspiration: findings of a standardized bench test.
    Rioufol G; Collin B; Vincent-Martin M; Buffet P; Lorgis L; L'Huillier I; Zeller M; Finet G; Rochette L; Cottin Y
    Catheter Cardiovasc Interv; 2006 Feb; 67(2):254-7. PubMed ID: 16331662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel use of the Heartrail catheter as a thrombectomy device.
    Hadi HM; Fraser DG; Mamas MA
    J Invasive Cardiol; 2011 Jan; 23(1):35-40. PubMed ID: 21183769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Vacuum Pressures and Forces Generated by Different Catheters and Pumps for Aspiration Thrombectomy in Acute Ischemic Stroke.
    Froehler MT
    Interv Neurol; 2017 Oct; 6(3-4):199-206. PubMed ID: 29118797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A technical comparison of thrombectomy vacuum aspiration systems.
    Yaeger K; Iserson A; Singh P; Wolf J; Vidal E; Oxley T; Costa AB; Fifi JT
    J Neurointerv Surg; 2020 Jan; 12(1):72-76. PubMed ID: 31273074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Armored" aspiration catheter technique to enhance aspiration catheter delivery in challenging thrombus-containing lesions.
    Brilakis ES; Lichtenwalter C; Banerjee S
    Catheter Cardiovasc Interv; 2009 Nov; 74(6):846-9. PubMed ID: 19496134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catheter design for effective manual bladder irrigation.
    Mesfin S; Sarkissian C; Malaeb B; Monga M
    J Urol; 2011 Dec; 186(6):2307-9. PubMed ID: 22014816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational modeling of a new thrombectomy device for the extraction of blood clots.
    Romero G; Higuera I; Martinez ML; Pearce G; Perkinson N; Roffe C; Wong J
    Adv Exp Med Biol; 2010; 680():627-33. PubMed ID: 20865548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of 2 thrombus aspiration devices with histopathological analysis of retrieved material in patients presenting with ST-segment elevation myocardial infarction.
    Vlaar PJ; Svilaas T; Vogelzang M; Diercks GF; de Smet BJ; van den Heuvel AF; Anthonio RL; Jessurun GA; Tan E; Suurmeijer AJ; Zijlstra F
    JACC Cardiovasc Interv; 2008 Jun; 1(3):258-64. PubMed ID: 19463309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical modelling of blood clot extraction by aspiration thrombectomy. Evaluation of aspiration catheter geometry.
    Talayero C; Romero G; Pearce G; Wong J
    J Biomech; 2019 Sep; 94():193-201. PubMed ID: 31420154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coronary thrombectomy, technical comparison of two systems on a laboratory bench: the impact of bends, angles and thrombus age.
    Pioud V; Lorgis L; Collin B; Garnier N; Guenfoudi MP; Richard C; Zeller M; Guignard MH; Rochette L; Cottin Y
    EuroIntervention; 2011 Jan; 6(6):729-34. PubMed ID: 21205596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approaches to mechanical coronary thrombectomy.
    Baim DS
    J Invasive Cardiol; 2006 Jul; 18 Suppl C():28C-31C. PubMed ID: 16883030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Under Pressure: Comparison of Aspiration Techniques for Endovascular Mechanical Thrombectomy.
    Nikoubashman O; Wischer D; Hennemann HM; Büsen M; Brockmann C; Wiesmann M
    AJNR Am J Neuroradiol; 2018 May; 39(5):905-909. PubMed ID: 29650784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic comparison of the Penumbra system and commonly available syringes in forced-suction thrombectomy.
    Simon SD; Grey CP
    J Neurointerv Surg; 2014 Apr; 6(3):205-11. PubMed ID: 23531712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. JETSTENT trial results: impact on ST-segment elevation myocardial infarction interventions.
    Antoniucci D
    J Invasive Cardiol; 2010 Oct; 22(10 Suppl B):23B-25B. PubMed ID: 20947933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mother-child aspiration technique.
    Yamada T; Mizuguchi Y; Taniguchi N; Hata T; Nakajima S; Takahashi A
    Int Heart J; 2014; 55(5):455-8. PubMed ID: 25070119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catheter tip distensibility substantially influences the aspiration force of thrombectomy devices.
    Li J; Castaño O; Tomasello A; de Dios Lascuevas M; Canals P; Engel E; Ribo M
    J Neurointerv Surg; 2022 Jan; 14(1):. PubMed ID: 33858973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of vacuum pressures and suction forces generated by different pump systems for aspiration thrombectomy.
    Kim S; Lee JY
    Front Neurol; 2022; 13():978584. PubMed ID: 36277930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of Thrombus Aspiration Catheter].
    Han X; Duan S; Liu S; Shi P; Chang C; Fu Y; Zhang Z; Ao N
    Zhongguo Yi Liao Qi Xie Za Zhi; 2019 Mar; 43(2):106-108. PubMed ID: 30977606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.