BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

604 related articles for article (PubMed ID: 24571103)

  • 1. An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol.
    Yue H; Ma X; Gong J
    Acc Chem Res; 2014 May; 47(5):1483-92. PubMed ID: 24571103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts.
    Wang A; Zhang T
    Acc Chem Res; 2013 Jul; 46(7):1377-86. PubMed ID: 23421609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites.
    Gong J; Yue H; Zhao Y; Zhao S; Zhao L; Lv J; Wang S; Ma X
    J Am Chem Soc; 2012 Aug; 134(34):13922-5. PubMed ID: 22625653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemocatalytic Conversion of Cellulosic Biomass to Methyl Glycolate, Ethylene Glycol, and Ethanol.
    Xu G; Wang A; Pang J; Zhao X; Xu J; Lei N; Wang J; Zheng M; Yin J; Zhang T
    ChemSusChem; 2017 Apr; 10(7):1390-1394. PubMed ID: 28266799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-Mordenite and Cu/ZnO catalysts.
    Li X; San X; Zhang Y; Ichii T; Meng M; Tan Y; Tsubaki N
    ChemSusChem; 2010 Oct; 3(10):1192-9. PubMed ID: 20715046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selectivity Control by Relay Catalysis in CO and CO
    Cheng K; Li Y; Kang J; Zhang Q; Wang Y
    Acc Chem Res; 2024 Mar; 57(5):714-725. PubMed ID: 38349801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic conversion of nonfood woody biomass solids to organic liquids.
    Barta K; Ford PC
    Acc Chem Res; 2014 May; 47(5):1503-12. PubMed ID: 24745655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective homogeneous and heterogeneous catalytic conversion of methanol/dimethyl ether to triptane.
    Hazari N; Iglesia E; Labinger JA; Simonetti DA
    Acc Chem Res; 2012 Apr; 45(4):653-62. PubMed ID: 22277056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in the routes and catalysts for ethanol synthesis from syngas.
    Liu G; Yang G; Peng X; Wu J; Tsubaki N
    Chem Soc Rev; 2022 Jul; 51(13):5606-5659. PubMed ID: 35705080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic Effect of a Boron-Doped Carbon-Nanotube-Supported Cu Catalyst for Selective Hydrogenation of Dimethyl Oxalate to Ethanol.
    Ai P; Tan M; Yamane N; Liu G; Fan R; Yang G; Yoneyama Y; Yang R; Tsubaki N
    Chemistry; 2017 Jun; 23(34):8252-8261. PubMed ID: 28421629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of ethanol synthesis from syngas on Rh(111).
    Choi Y; Liu P
    J Am Chem Soc; 2009 Sep; 131(36):13054-61. PubMed ID: 19702298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.
    Haibach MC; Kundu S; Brookhart M; Goldman AS
    Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions.
    Li S; Gong J
    Chem Soc Rev; 2014 Nov; 43(21):7245-56. PubMed ID: 25182070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol synthesis from syngas over Cu(Pd)-doped Fe(100): a systematic theoretical investigation.
    Wang W; Wang Y; Wang GC
    Phys Chem Chem Phys; 2018 Jan; 20(4):2492-2507. PubMed ID: 29313538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network.
    Wang HF; Liu ZP
    J Am Chem Soc; 2008 Aug; 130(33):10996-1004. PubMed ID: 18642913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Heterogeneous Catalysts for CO
    Gao P; Zhang L; Li S; Zhou Z; Sun Y
    ACS Cent Sci; 2020 Oct; 6(10):1657-1670. PubMed ID: 33145406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene.
    Makshina EV; Dusselier M; Janssens W; Degrève J; Jacobs PA; Sels BF
    Chem Soc Rev; 2014 Nov; 43(22):7917-53. PubMed ID: 24993100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the surface environment of heterogeneous catalysts using self-assembled monolayers.
    Schoenbaum CA; Schwartz DK; Medlin JW
    Acc Chem Res; 2014 Apr; 47(4):1438-45. PubMed ID: 24635215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.