BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 24571607)

  • 41. The effect of surface modifications of carbon nanotubes on the electrical properties of inkjet-printed SWNT/PEDOT-PSS composite line patterns.
    Najeeb CK; Lee JH; Chang J; Kim JH
    Nanotechnology; 2010 Sep; 21(38):385302. PubMed ID: 20739744
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PEDOT:PSS "Wires" Printed on Textile for Wearable Electronics.
    Guo Y; Otley MT; Li M; Zhang X; Sinha SK; Treich GM; Sotzing GA
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26998-27005. PubMed ID: 27632390
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wound-Dressing-Based Antenna Inkjet-Printed Using Nanosilver Ink for Wireless Medical Monitoring.
    Chen CB; Kao HL; Chang LC; Lin YC; Chen YY; Chung WH; Chiu HC
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144133
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An MRI receiver coil produced by inkjet printing directly on to a flexible substrate.
    Mager D; Peter A; Tin LD; Fischer E; Smith PJ; Hennig J; Korvink JG
    IEEE Trans Med Imaging; 2010 Feb; 29(2):482-7. PubMed ID: 20129848
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fabrication, surface properties, and origin of superoleophobicity for a model textured surface.
    Zhao H; Law KY; Sambhy V
    Langmuir; 2011 May; 27(10):5927-35. PubMed ID: 21486088
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inkjet printed highly porous TiO2 films for improved electrical properties of photoanode.
    Bernacka-Wojcik I; Wojcik PJ; Aguas H; Fortunato E; Martins R
    J Colloid Interface Sci; 2016 Mar; 465():208-14. PubMed ID: 26674237
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Filling schemes of silver dots inkjet-printed on pixelated nanostructured surfaces.
    Alan S; Jiang H; Shahbazbegian H; Patel JN; Kaminska B
    Nanotechnology; 2017 Mar; 28(13):135302. PubMed ID: 28248646
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tailoring Ink-Substrate Interactions via Thin Polymeric Layers for High-Resolution Printing.
    Matavž A; Bobnar V; Malič B
    Langmuir; 2017 Oct; 33(43):11893-11900. PubMed ID: 28895738
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Particle Fabrication Using Inkjet Printing onto Hydrophobic Surfaces for Optimization and Calibration of Trace Contraband Detection Sensors.
    Gillen G; Najarro M; Wight S; Walker M; Verkouteren J; Windsor E; Barr T; Staymates M; Urbas A
    Sensors (Basel); 2015 Nov; 15(11):29618-34. PubMed ID: 26610515
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preparing and Applying Silver Nanoparticles in Conductive Ink and Inkjet Painting.
    Bing Hong G; Hua Luo Y; Jen Chuang K; Ming Ma C
    J Nanosci Nanotechnol; 2021 Dec; 21(12):5979-5986. PubMed ID: 34229794
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The roles of wettability and surface tension in droplet formation during inkjet printing.
    He B; Yang S; Qin Z; Wen B; Zhang C
    Sci Rep; 2017 Sep; 7(1):11841. PubMed ID: 28928447
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spot morphology of non-contact printed protein molecules on non-porous substrates with a range of hydrophobicities.
    Mujawar LH; Norde W; van Amerongen A
    Analyst; 2013 Jan; 138(2):518-24. PubMed ID: 23166908
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inkjet-printed thiol self-assembled monolayer structures on gold: quality control and microarray electrode fabrication.
    Rianasari I; Walder L; Burchardt M; Zawisza I; Wittstock G
    Langmuir; 2008 Aug; 24(16):9110-7. PubMed ID: 18616305
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Superhydrophobic inkjet printed flexible graphene circuits via direct-pulsed laser writing.
    Das SR; Srinivasan S; Stromberg LR; He Q; Garland N; Straszheim WE; Ajayan PM; Balasubramanian G; Claussen JC
    Nanoscale; 2017 Dec; 9(48):19058-19065. PubMed ID: 29119163
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hybrid Printing for the Fabrication of Smart Sensors.
    Faller LM; Zikulnig J; Krivec M; Roshanghias A; Abram A; Zangl H
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30774128
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improvement of dissolution rate of indomethacin by inkjet printing.
    Wickström H; Palo M; Rijckaert K; Kolakovic R; Nyman JO; Määttänen A; Ihalainen P; Peltonen J; Genina N; de Beer T; Löbmann K; Rades T; Sandler N
    Eur J Pharm Sci; 2015 Jul; 75():91-100. PubMed ID: 25817804
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication of capacitive acoustic resonators combining 3D printing and 2D inkjet printing techniques.
    Haque RI; Ogam E; Loussert C; Benaben P; Boddaert X
    Sensors (Basel); 2015 Oct; 15(10):26018-38. PubMed ID: 26473878
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electroless copper plating of inkjet-printed polydopamine nanoparticles: a facile method to fabricate highly conductive patterns at near room temperature.
    Ma S; Liu L; Bromberg V; Singler TJ
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19494-8. PubMed ID: 25360833
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Creating Patterned Conjugated Polymer Images Using Water-Compatible Reactive Inkjet Printing.
    Jeon S; Park S; Nam J; Kang Y; Kim JM
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1813-8. PubMed ID: 26731170
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Flexible miniaturized nickel oxide thermistor arrays via inkjet printing technology.
    Huang CC; Kao ZK; Liao YC
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12954-9. PubMed ID: 24298996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.