These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 24571607)

  • 61. Robust Design of a Particle-Free Silver-Organo-Complex Ink with High Conductivity and Inkjet Stability for Flexible Electronics.
    Vaseem M; McKerricher G; Shamim A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):177-86. PubMed ID: 26713357
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Integration of Inkjet Printed Graphene as a Hole Transport Layer in Organic Solar Cells.
    Kastner J; Tomarchio F; Decorde N; Kehrer M; Hesser G; Fuchsbauer A
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893294
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Influence of Surface Chemical and Topographical Properties on Morphology, Wettability and Surface Coverage of Inkjet-Printed Graphene-Based Materials.
    Salaoru I; Morris D; Ware E; Nama Manjunatha K
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930651
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Inkjet-Printed PEDOT:PSS Electrodes on Paper for Electrocardiography.
    Bihar E; Roberts T; Saadaoui M; Hervé T; De Graaf JB; Malliaras GG
    Adv Healthc Mater; 2017 Mar; 6(6):. PubMed ID: 28121395
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Amphiphilic Silver Nanoparticles for Inkjet-Printable Conductive Inks.
    Ivanišević I; Kovačić M; Zubak M; Ressler A; Krivačić S; Katančić Z; Gudan Pavlović I; Kassal P
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500875
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Inkjet-printed lines with well-defined morphologies and low electrical resistance on repellent pore-structured polyimide films.
    Kim C; Nogi M; Suganuma K; Yamato Y
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2168-73. PubMed ID: 22452572
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity.
    Shen W; Zhang X; Huang Q; Xu Q; Song W
    Nanoscale; 2014; 6(3):1622-8. PubMed ID: 24337051
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Inkjet-printed zinc tin oxide thin-film transistor.
    Kim D; Jeong Y; Song K; Park SK; Cao G; Moon J
    Langmuir; 2009 Sep; 25(18):11149-54. PubMed ID: 19735156
    [TBL] [Abstract][Full Text] [Related]  

  • 69. On the Droplet Size and Application of Wettability Analysis for the Development of Ink and Printing Substrates.
    Grüßer M; Waugh DG; Lawrence J; Langer N; Scholz D
    Langmuir; 2019 Sep; 35(38):12356-12365. PubMed ID: 31468975
    [TBL] [Abstract][Full Text] [Related]  

  • 70. High-resolution, high-aspect ratio conductive wires embedded in plastic substrates.
    Mahajan A; Hyun WJ; Walker SB; Lewis JA; Francis LF; Frisbie CD
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1841-7. PubMed ID: 25594812
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Solution processed aluminum paper for flexible electronics.
    Lee HM; Lee HB; Jung DS; Yun JY; Ko SH; Park SB
    Langmuir; 2012 Sep; 28(36):13127-35. PubMed ID: 22873281
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Inkjet-Printed Small-Molecule Organic Light-Emitting Diodes: Halogen-Free Inks, Printing Optimization, and Large-Area Patterning.
    Zhou L; Yang L; Yu M; Jiang Y; Liu CF; Lai WY; Huang W
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40533-40540. PubMed ID: 29076715
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Inkjet patterning of multiline intersections for wirings in printed electronics.
    Diaz E; Ramon E; Carrabina J
    Langmuir; 2013 Oct; 29(40):12608-14. PubMed ID: 24004148
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cell viability and cytotoxicity of inkjet-printed flexible organic electrodes on parylene C.
    Mandelli JS; Koepp J; Hama A; Sanaur S; Rae GA; Rambo CR
    Biomed Microdevices; 2021 Jan; 23(1):2. PubMed ID: 33386434
    [TBL] [Abstract][Full Text] [Related]  

  • 75. One-step inkjet printing of conductive silver tracks on polymer substrates.
    Perelaer J; Hendriks CE; de Laat AWM; Schubert US
    Nanotechnology; 2009 Apr; 20(16):165303. PubMed ID: 19420568
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Superhydrophobic surfaces using selected zinc oxide microrod growth on ink-jetted patterns.
    Myint MT; Kitsomboonloha R; Baruah S; Dutta J
    J Colloid Interface Sci; 2011 Feb; 354(2):810-5. PubMed ID: 21109250
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Inkjet printed silver nanoparticles on hydrophobic papers for efficient detection of thiram.
    Duan J; Qiu Z; Li L; Feng L; Huang L; Xiao G
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Dec; 243():118811. PubMed ID: 32829159
    [TBL] [Abstract][Full Text] [Related]  

  • 78. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Han JT; Kim S; Karim A
    Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Behavior of printable formulations of loperamide and caffeine on different substrates--effect of print density in inkjet printing.
    Genina N; Fors D; Palo M; Peltonen J; Sandler N
    Int J Pharm; 2013 Sep; 453(2):488-97. PubMed ID: 23769992
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Printability of papers recycled from toner and inkjet-printed papers after deinking and recycling processes.
    Tutak D; Karademir A; Aydemir C; Aravamuthan R
    J Appl Biomater Funct Mater; 2018 Apr; 16(2):76-82. PubMed ID: 29147994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.