These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24572096)

  • 1. Dopamine neurons coding prediction errors in reward space, but not in aversive space: a matter of location?
    Morrens J
    J Neurophysiol; 2014 Sep; 112(5):1021-4. PubMed ID: 24572096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two dimensions of value: dopamine neurons represent reward but not aversiveness.
    Fiorillo CD
    Science; 2013 Aug; 341(6145):546-9. PubMed ID: 23908236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Midbrain dopamine neurons signal aversion in a reward-context-dependent manner.
    Matsumoto H; Tian J; Uchida N; Watabe-Uchida M
    Elife; 2016 Oct; 5():. PubMed ID: 27760002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli.
    Mirenowicz J; Schultz W
    Nature; 1996 Feb; 379(6564):449-51. PubMed ID: 8559249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiphasic temporal dynamics in responses of midbrain dopamine neurons to appetitive and aversive stimuli.
    Fiorillo CD; Song MR; Yun SR
    J Neurosci; 2013 Mar; 33(11):4710-25. PubMed ID: 23486944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computing reward-prediction error: an integrated account of cortical timing and basal-ganglia pathways for appetitive and aversive learning.
    Morita K; Kawaguchi Y
    Eur J Neurosci; 2015 Aug; 42(4):2003-21. PubMed ID: 26095906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity and homogeneity in responses of midbrain dopamine neurons.
    Fiorillo CD; Yun SR; Song MR
    J Neurosci; 2013 Mar; 33(11):4693-709. PubMed ID: 23486943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amygdala-Midbrain Connections Modulate Appetitive and Aversive Learning.
    Steinberg EE; Gore F; Heifets BD; Taylor MD; Norville ZC; Beier KT; Földy C; Lerner TN; Luo L; Deisseroth K; Malenka RC
    Neuron; 2020 Jun; 106(6):1026-1043.e9. PubMed ID: 32294466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dopamine reward prediction error signal codes the temporal evaluation of a perceptual decision report.
    Sarno S; de Lafuente V; Romo R; Parga N
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):E10494-E10503. PubMed ID: 29133424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinated activity of ventral tegmental neurons adapts to appetitive and aversive learning.
    Kim Y; Wood J; Moghaddam B
    PLoS One; 2012; 7(1):e29766. PubMed ID: 22238652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets.
    Awata H; Watanabe T; Hamanaka Y; Mito T; Noji S; Mizunami M
    Sci Rep; 2015 Nov; 5():15885. PubMed ID: 26521965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate inputs send prediction error of reward, but not negative value of aversive stimuli, to dopamine neurons.
    Amo R; Uchida N; Watabe-Uchida M
    Neuron; 2024 Mar; 112(6):1001-1019.e6. PubMed ID: 38278147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies.
    Awata H; Wakuda R; Ishimaru Y; Matsuoka Y; Terao K; Katata S; Matsumoto Y; Hamanaka Y; Noji S; Mito T; Mizunami M
    Sci Rep; 2016 Jul; 6():29696. PubMed ID: 27412401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetic Blockade of Dopamine Transients Prevents Learning Induced by Changes in Reward Features.
    Chang CY; Gardner M; Di Tillio MG; Schoenbaum G
    Curr Biol; 2017 Nov; 27(22):3480-3486.e3. PubMed ID: 29103933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fos response of the tail of the ventral tegmental area to food restriction entails a prediction error processing.
    Sánchez-Catalán MJ; Barrot M
    Behav Brain Res; 2022 May; 425():113826. PubMed ID: 35247487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat: Historical perspective.
    Figlewicz DP
    Brain Res; 2016 Aug; 1645():68-70. PubMed ID: 26731335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporally restricted dopaminergic control of reward-conditioned movements.
    Lee K; Claar LD; Hachisuka A; Bakhurin KI; Nguyen J; Trott JM; Gill JL; Masmanidis SC
    Nat Neurosci; 2020 Feb; 23(2):209-216. PubMed ID: 31932769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target.
    Parker NF; Cameron CM; Taliaferro JP; Lee J; Choi JY; Davidson TJ; Daw ND; Witten IB
    Nat Neurosci; 2016 Jun; 19(6):845-54. PubMed ID: 27110917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement.
    Fields HL; Hjelmstad GO; Margolis EB; Nicola SM
    Annu Rev Neurosci; 2007; 30():289-316. PubMed ID: 17376009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.