These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24572278)

  • 41. High Production of 2,3-Butanediol (2,3-BD) by Raoultella ornithinolytica B6 via Optimizing Fermentation Conditions and Overexpressing 2,3-BD Synthesis Genes.
    Kim T; Cho S; Lee SM; Woo HM; Lee J; Um Y; Seo JH
    PLoS One; 2016; 11(10):e0165076. PubMed ID: 27760200
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Consequences of cps mutation of Klebsiella pneumoniae on 1,3-propanediol fermentation.
    Guo NN; Zheng ZM; Mai YL; Liu HJ; Liu DH
    Appl Microbiol Biotechnol; 2010 Mar; 86(2):701-7. PubMed ID: 19936735
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumoniae.
    Du C; Yan H; Zhang Y; Li Y; Cao Z
    Appl Microbiol Biotechnol; 2006 Jan; 69(5):554-63. PubMed ID: 16021488
    [TBL] [Abstract][Full Text] [Related]  

  • 44. budC knockout in Klebsiella pneumoniae for bioconversion from glycerol to 1,3-propanediol.
    Guo X; Fang H; Zhuge B; Zong H; Song J; Zhuge J; Du X
    Biotechnol Appl Biochem; 2013; 60(6):557-63. PubMed ID: 23586646
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of pH and fermentation strategies on 2,3-butanediol production with an isolated Klebsiella sp. Zmd30 strain.
    Wong CL; Yen HW; Lin CL; Chang JS
    Bioresour Technol; 2014; 152():169-76. PubMed ID: 24291317
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Production of 1,3-propanediol from glycerol using the newly isolated Klebsiella pneumoniae J2B.
    Durgapal M; Kumar V; Yang TH; Lee HJ; Seung D; Park S
    Bioresour Technol; 2014 May; 159():223-31. PubMed ID: 24657752
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy.
    Han X; Song W; Liu G; Li Z; Yang P; Qu Y
    Bioresour Technol; 2017 Mar; 227():155-163. PubMed ID: 28013132
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae.
    Xu YZ; Guo NN; Zheng ZM; Ou XJ; Liu HJ; Liu DH
    Biotechnol Bioeng; 2009 Dec; 104(5):965-72. PubMed ID: 19572314
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Co-production of 3-hydroxypropionic acid and 1,3-propanediol by Klebseilla pneumoniae expressing aldH under microaerobic conditions.
    Huang Y; Li Z; Shimizu K; Ye Q
    Bioresour Technol; 2013 Jan; 128():505-12. PubMed ID: 23201906
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced reducing equivalent generation for 1,3-propanediol production through cofermentation of glycerol and xylose by Klebsiella pneumoniae.
    Jin P; Lu SG; Huang H; Luo F; Li S
    Appl Biochem Biotechnol; 2011 Dec; 165(7-8):1532-42. PubMed ID: 21960271
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbial production of 1,3-propanediol by Klebsiella pneumoniae XJPD-Li under different aeration strategies.
    Ma BB; Xu XL; Zhang GL; Wang LW; Wu M; Li C
    Appl Biochem Biotechnol; 2009 Jan; 152(1):127-34. PubMed ID: 18506633
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An effective and simplified fed-batch strategy for improved 2,3-butanediol production by Klebsiella oxytoca.
    Nie ZK; Ji XJ; Huang H; Du J; Li ZY; Qu L; Zhang Q; Ouyang PK
    Appl Biochem Biotechnol; 2011 Apr; 163(8):946-53. PubMed ID: 20938754
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimization of bio-hydrogen production from biodiesel wastes by Klebsiella pneumoniae.
    Liu F; Fang B
    Biotechnol J; 2007 Mar; 2(3):374-80. PubMed ID: 17260330
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Process optimization of continuous gluconic acid fermentation by isolated yeast-like strains of Aureobasidium pullulans.
    Anastassiadis S; Aivasidis A; Wandrey C; Rehm HJ
    Biotechnol Bioeng; 2005 Aug; 91(4):494-501. PubMed ID: 15937884
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhancement of 1,3-dihydroxyacetone production by a UV-induced mutant of Gluconobacter oxydans with DO control strategy.
    Hu ZC; Zheng YG
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1152-60. PubMed ID: 21833510
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancement of 5-keto-d-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy.
    Yuan J; Wu M; Lin J; Yang L
    J Biosci Bioeng; 2016 Jul; 122(1):10-6. PubMed ID: 26896860
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A new polysialic acid production process based on dual-stage pH control and fed-batch fermentation for higher yield and resulting high molecular weight product.
    Zheng ZY; Wang SZ; Li GS; Zhan XB; Lin CC; Wu JR; Zhu L
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2405-12. PubMed ID: 23090056
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adaptive laboratory evolution of Klebsiella pneumoniae for improving 2,3-butanediol production.
    Li H; Zhang G; Dang Y
    Bioengineered; 2016 Nov; 7(6):432-438. PubMed ID: 27442598
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The regulation of carbohydrate metabolism in Klebsiella aerogenes NCTC 418 organisms, growing in chemostat culture.
    Neijssel OM; Tempest DW
    Arch Microbiol; 1975 Dec; 106(3):251-8. PubMed ID: 766718
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Omega-3 production by fermentation of Yarrowia lipolytica: From fed-batch to continuous.
    Xie D; Miller E; Sharpe P; Jackson E; Zhu Q
    Biotechnol Bioeng; 2017 Apr; 114(4):798-812. PubMed ID: 27861744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.