These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Kinoshita H; Kaneda S; Fujii T; Oshima M Lab Chip; 2007 Mar; 7(3):338-46. PubMed ID: 17330165 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications. Kim YW; Yoo JY Biosens Bioelectron; 2009 Aug; 24(12):3677-82. PubMed ID: 19559591 [TBL] [Abstract][Full Text] [Related]
8. Direct measurement of particle size and 3D velocity of a gas-solid pipe flow with digital holographic particle tracking velocimetry. Wu Y; Wu X; Yao L; Gréhan G; Cen K Appl Opt; 2015 Mar; 54(9):2514-23. PubMed ID: 25968543 [TBL] [Abstract][Full Text] [Related]
9. Optically coated mirror-embedded microchannel to measure hydrophoretic particle ordering in three dimensions. Choi S; Park JK Small; 2009 Oct; 5(19):2205-11. PubMed ID: 19637272 [TBL] [Abstract][Full Text] [Related]
11. 3D SAPIV particle field reconstruction method based on adaptive threshold. Qu X; Song Y; Jin Y; Li Z; Wang X; Guo Z; Ji Y; He A Appl Opt; 2018 Mar; 57(7):1622-1633. PubMed ID: 29522010 [TBL] [Abstract][Full Text] [Related]
12. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing. Lin SC; Yen PW; Peng CC; Tung YC Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751 [TBL] [Abstract][Full Text] [Related]
13. Scanning defocusing particle tracking for the experimental characterization of flows in demanding microfluidic systems. Galand Q; Blinder D; Gelin P; Maes D; De Malsche W Appl Opt; 2024 Apr; 63(10):2636-2642. PubMed ID: 38568547 [TBL] [Abstract][Full Text] [Related]
14. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes. Chu H; Doh I; Cho YH Lab Chip; 2009 Mar; 9(5):686-91. PubMed ID: 19224018 [TBL] [Abstract][Full Text] [Related]
15. Hybrid PIV-PTV technique for measuring blood flow in rat mesenteric vessels. Ha H; Nam KH; Lee SJ Microvasc Res; 2012 Nov; 84(3):242-8. PubMed ID: 22820216 [TBL] [Abstract][Full Text] [Related]
16. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system. Zhuang G; Jensen TG; Kutter JP Electrophoresis; 2012 Jul; 33(12):1715-22. PubMed ID: 22740459 [TBL] [Abstract][Full Text] [Related]
18. Stereoscopic particle image velocimetry in inhomogeneous refractive index fields of combustion flows. Vanselow C; Hoppe O; Stöbener D; Fischer A Appl Opt; 2021 Oct; 60(28):8716-8727. PubMed ID: 34613097 [TBL] [Abstract][Full Text] [Related]
19. Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction. Ruh D; Tränkle B; Rohrbach A Opt Express; 2011 Oct; 19(22):21627-42. PubMed ID: 22109012 [TBL] [Abstract][Full Text] [Related]
20. Investigation and visualization of internal flow through particle aggregates and microbial flocs using particle image velocimetry. Xiao F; Lam KM; Li XY J Colloid Interface Sci; 2013 May; 397():163-8. PubMed ID: 23465191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]