These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24573214)

  • 1. Sulfur and iron accumulation in three marine-archaeological shipwrecks in the Baltic Sea: the Ghost, the Crown and the Sword.
    Fors Y; Grudd H; Rindby A; Jalilehvand F; Sandström M; Cato I; Bornmalm L
    Sci Rep; 2014 Feb; 4():4222. PubMed ID: 24573214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfur and iron in shipwrecks cause conservation concerns.
    Fors Y; Sandström M
    Chem Soc Rev; 2006 May; 35(5):399-415. PubMed ID: 16636724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfur accumulation in the timbers of King Henry VIII's warship Mary Rose: a pathway in the sulfur cycle of conservation concern.
    Sandström M; Jalilehvand F; Damian E; Fors Y; Gelius U; Jones M; Salomé M
    Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14165-70. PubMed ID: 16186503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical aspects of waterlogged wood in historical shipwrecks.
    Fors Y; Jalilehvand F; Sandström M
    Anal Sci; 2011; 27(8):785-92. PubMed ID: 21828914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of Mary Rose conservation treatment on iron oxidation processes and microbial communities contributing to acid production in marine archaeological timbers.
    Preston J; Smith AD; Schofield EJ; Chadwick AV; Jones MA; Watts JE
    PLoS One; 2014; 9(2):e84169. PubMed ID: 24586230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Formation of Chemical Degraders during the Conservation of a Wooden Tudor Shipwreck.
    Aluri ER; Reynaud C; Bardas H; Piva E; Cibin G; Mosselmans JFW; Chadwick AV; Schofield EJ
    Chempluschem; 2020 Aug; 85(8):1632-1638. PubMed ID: 32391648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ancient wood of the Acqualadrone rostrum: materials history through gas chromatography/mass spectrometry and sulfur X-ray absorption spectroscopy.
    Frank P; Caruso F; Caponetti E
    Anal Chem; 2012 May; 84(10):4419-28. PubMed ID: 22545724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbes for Archaeological Wood Conservation.
    Ganesan S; James SM; Monachon M; Joseph E
    Chimia (Aarau); 2022 Sep; 76(9):772-776. PubMed ID: 38069705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial dynamics, chemical profile, and bioactive potential of diverse Egyptian marine environments from archaeological wood to soda lake.
    Hegazy GE; Moawad MN; Othman SS; Soliman NA; Abeer E A; Oraby H; Abdel-Fattah YR
    Sci Rep; 2024 Sep; 14(1):20918. PubMed ID: 39251732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of particle size, relative humidity, and sulfur dioxide on iron solubility in simulated atmospheric marine aerosols.
    Cartledge BT; Marcotte AR; Herckes P; Anbar AD; Majestic BJ
    Environ Sci Technol; 2015 Jun; 49(12):7179-87. PubMed ID: 26000788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur speciation and bioaccumulation in camphor tree leaves as atmospheric sulfur indicator analyzed by synchrotron radiation XRF and XANES.
    Zeng J; Zhang G; Bao L; Long S; Tan M; Li Y; Ma C; Zhao Y
    J Environ Sci (China); 2013 Mar; 25(3):605-12. PubMed ID: 23923435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the impregnation of archaeological waterlogged wood with consolidation treatments using synchrotron radiation microtomography.
    Bugani S; Modugno F; Lucejko JJ; Giachi G; Cagno S; Cloetens P; Janssens K; Morselli L
    Anal Bioanal Chem; 2009 Dec; 395(7):1977-85. PubMed ID: 19760192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root-induced soil deformation influences Fe, S and P: rhizosphere chemistry investigated using synchrotron XRF and XANES.
    van Veelen A; Koebernick N; Scotson CS; McKay-Fletcher D; Huthwelker T; Borca CN; Mosselmans JFW; Roose T
    New Phytol; 2020 Feb; 225(4):1476-1490. PubMed ID: 31591727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfur organic compounds in bottom sediments of the eastern Gulf of Finland.
    Khoroshko LO; Petrova VN; Takhistov VV; Viktorovskii IV; Lahtiperä M; Paasivirta J
    Environ Sci Pollut Res Int; 2007 Sep; 14(6):366-76. PubMed ID: 17993219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polysulfide speciation and reactivity in chromate-contaminated soil.
    Chrysochoou M; Johnston CP
    J Hazard Mater; 2015 Jan; 281():87-94. PubMed ID: 25092639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfur: not a "silent" element any more.
    Jalilehvand F
    Chem Soc Rev; 2006 Dec; 35(12):1256-68. PubMed ID: 17225887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfate burial constraints on the Phanerozoic sulfur cycle.
    Halevy I; Peters SE; Fischer WW
    Science; 2012 Jul; 337(6092):331-4. PubMed ID: 22822147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-analytical study of degradation of lignin in archaeological waterlogged wood.
    Colombini MP; Lucejko JJ; Modugno F; Orlandi M; Tolppa EL; Zoia L
    Talanta; 2009 Nov; 80(1):61-70. PubMed ID: 19782193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Thermophilic microbial communities of deep-sea hydrothermal environments].
    Miroshnichenko ML
    Mikrobiologiia; 2004; 73(1):5-18. PubMed ID: 15074034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial benthic community composition in the Baltic Sea in selected chemical and conventional weapons dump sites affected by munition corrosion.
    Cybulska K; Łońska E; Fabisiak J
    Sci Total Environ; 2020 Mar; 709():136112. PubMed ID: 31884294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.