These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 24573478)

  • 21. RBRDetector: improved prediction of binding residues on RNA-binding protein structures using complementary feature- and template-based strategies.
    Yang XX; Deng ZL; Liu R
    Proteins; 2014 Oct; 82(10):2455-71. PubMed ID: 24854765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improve the prediction of RNA-binding residues using structural neighbours.
    Li Q; Cao Z; Liu H
    Protein Pept Lett; 2010 Mar; 17(3):287-96. PubMed ID: 19508202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.
    Kumar M; Gromiha MM; Raghava GP
    J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In Silico Prediction and Validation of Novel RNA Binding Proteins and Residues in the Human Proteome.
    Chowdhury S; Zhang J; Kurgan L
    Proteomics; 2018 Nov; 18(21-22):e1800064. PubMed ID: 29806170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RBPMetaDB: a comprehensive annotation of mouse RNA-Seq datasets with perturbations of RNA-binding proteins.
    Li J; Deng SP; Vieira J; Thomas J; Costa V; Tseng CS; Ivankovic F; Ciccodicola A; Yu P
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 29931156
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PRAS: Predicting functional targets of RNA binding proteins based on CLIP-seq peaks.
    Lin J; Zhang Y; Frankel WN; Ouyang Z
    PLoS Comput Biol; 2019 Aug; 15(8):e1007227. PubMed ID: 31425505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data.
    Polishchuk M; Paz I; Kohen R; Mesika R; Yakhini Z; Mandel-Gutfreund Y
    Methods; 2017 Apr; 118-119():73-81. PubMed ID: 28274760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. AIRBP: Accurate identification of RNA-binding proteins using machine learning techniques.
    Mishra A; Khanal R; Kabir WU; Hoque T
    Artif Intell Med; 2021 Mar; 113():102034. PubMed ID: 33685590
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling Protein-Protein or Protein-DNA/RNA Complexes Using the HDOCK Webserver.
    Yan Y; Huang SY
    Methods Mol Biol; 2020; 2165():217-229. PubMed ID: 32621227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure-based prediction of RNA-binding domains and RNA-binding sites and application to structural genomics targets.
    Zhao H; Yang Y; Zhou Y
    Nucleic Acids Res; 2011 Apr; 39(8):3017-25. PubMed ID: 21183467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient mapping of RNA-binding residues in RNA-binding proteins using local sequence features of binding site residues in protein-RNA complexes.
    Agarwal A; Kant S; Bahadur RP
    Proteins; 2023 Sep; 91(9):1361-1379. PubMed ID: 37254800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RBPmap: A Tool for Mapping and Predicting the Binding Sites of RNA-Binding Proteins Considering the Motif Environment.
    Paz I; Argoetti A; Cohen N; Even N; Mandel-Gutfreund Y
    Methods Mol Biol; 2022; 2404():53-65. PubMed ID: 34694603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deciphering the protein-RNA recognition code: combining large-scale quantitative methods with structural biology.
    Hennig J; Sattler M
    Bioessays; 2015 Aug; 37(8):899-908. PubMed ID: 26059946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PreRBP-TL: prediction of species-specific RNA-binding proteins based on transfer learning.
    Zhang J; Yan K; Chen Q; Liu B
    Bioinformatics; 2022 Apr; 38(8):2135-2143. PubMed ID: 35176130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. rMAPS: RNA map analysis and plotting server for alternative exon regulation.
    Park JW; Jung S; Rouchka EC; Tseng YT; Xing Y
    Nucleic Acids Res; 2016 Jul; 44(W1):W333-8. PubMed ID: 27174931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RBPPred: predicting RNA-binding proteins from sequence using SVM.
    Zhang X; Liu S
    Bioinformatics; 2017 Mar; 33(6):854-862. PubMed ID: 27993780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbohydrate-binding protein identification by coupling structural similarity searching with binding affinity prediction.
    Zhao H; Yang Y; von Itzstein M; Zhou Y
    J Comput Chem; 2014 Nov; 35(30):2177-83. PubMed ID: 25220682
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Seten: a tool for systematic identification and comparison of processes, phenotypes, and diseases associated with RNA-binding proteins from condition-specific CLIP-seq profiles.
    Budak G; Srivastava R; Janga SC
    RNA; 2017 Jun; 23(6):836-846. PubMed ID: 28336542
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks.
    Pan X; Shen HB
    Bioinformatics; 2018 Oct; 34(20):3427-3436. PubMed ID: 29722865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.