BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 24573480)

  • 21. MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins.
    Disfani FM; Hsu WL; Mizianty MJ; Oldfield CJ; Xue B; Dunker AK; Uversky VN; Kurgan L
    Bioinformatics; 2012 Jun; 28(12):i75-83. PubMed ID: 22689782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intrinsically disordered proteins (IDPs) in trypanosomatids.
    de Cássia Ruy P; Torrieri R; Toledo JS; de Souza Alves V; Cruz AK; Ruiz JC
    BMC Genomics; 2014 Dec; 15(1):1100. PubMed ID: 25496281
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of Disordered Regions in Proteins with Recurrent Neural Networks and Protein Dynamics.
    Orlando G; Raimondi D; Codicè F; Tabaro F; Vranken W
    J Mol Biol; 2022 Jun; 434(12):167579. PubMed ID: 35469832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CLIP: accurate prediction of disordered linear interacting peptides from protein sequences using co-evolutionary information.
    Peng Z; Li Z; Meng Q; Zhao B; Kurgan L
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36458437
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MeDor: a metaserver for predicting protein disorder.
    Lieutaud P; Canard B; Longhi S
    BMC Genomics; 2008 Sep; 9 Suppl 2(Suppl 2):S25. PubMed ID: 18831791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accuracy of protein-level disorder predictions.
    Katuwawala A; Oldfield CJ; Kurgan L
    Brief Bioinform; 2020 Sep; 21(5):1509-1522. PubMed ID: 31616935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tutorial: a guide for the selection of fast and accurate computational tools for the prediction of intrinsic disorder in proteins.
    Kurgan L; Hu G; Wang K; Ghadermarzi S; Zhao B; Malhis N; Erdős G; Gsponer J; Uversky VN; Dosztányi Z
    Nat Protoc; 2023 Nov; 18(11):3157-3172. PubMed ID: 37740110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance of protein disorder prediction programs on amino acid substitutions.
    Ali H; Urolagin S; Gurarslan Ö; Vihinen M
    Hum Mutat; 2014 Jul; 35(7):794-804. PubMed ID: 24753228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disordered nucleiome: Abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea.
    Wang C; Uversky VN; Kurgan L
    Proteomics; 2016 May; 16(10):1486-98. PubMed ID: 27037624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields.
    Wang S; Weng S; Ma J; Tang Q
    Int J Mol Sci; 2015 Jul; 16(8):17315-30. PubMed ID: 26230689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources.
    Mizianty MJ; Stach W; Chen K; Kedarisetti KD; Disfani FM; Kurgan L
    Bioinformatics; 2010 Sep; 26(18):i489-96. PubMed ID: 20823312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. WSsas: a web service for the annotation of functional residues through structural homologues.
    Talavera D; Laskowski RA; Thornton JM
    Bioinformatics; 2009 May; 25(9):1192-4. PubMed ID: 19251774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HybridDBRpred: improved sequence-based prediction of DNA-binding amino acids using annotations from structured complexes and disordered proteins.
    Zhang J; Basu S; Kurgan L
    Nucleic Acids Res; 2024 Jan; 52(2):e10. PubMed ID: 38048333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions.
    Deng X; Gumm J; Karki S; Eickholt J; Cheng J
    Int J Mol Sci; 2015 Jul; 16(7):15384-404. PubMed ID: 26198229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational prediction of functions of intrinsically disordered regions.
    Katuwawala A; Ghadermarzi S; Kurgan L
    Prog Mol Biol Transl Sci; 2019; 166():341-369. PubMed ID: 31521235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteus: a random forest classifier to predict disorder-to-order transitioning binding regions in intrinsically disordered proteins.
    Basu S; Söderquist F; Wallner B
    J Comput Aided Mol Des; 2017 May; 31(5):453-466. PubMed ID: 28365882
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CIDER: Resources to Analyze Sequence-Ensemble Relationships of Intrinsically Disordered Proteins.
    Holehouse AS; Das RK; Ahad JN; Richardson MO; Pappu RV
    Biophys J; 2017 Jan; 112(1):16-21. PubMed ID: 28076807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DPROT: prediction of disordered proteins using evolutionary information.
    Sethi D; Garg A; Raghava GP
    Amino Acids; 2008 Oct; 35(3):599-605. PubMed ID: 18425404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction and analysis of intrinsically disordered proteins.
    Punta M; Simon I; Dosztányi Z
    Methods Mol Biol; 2015; 1261():35-59. PubMed ID: 25502193
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uncertainty analysis in protein disorder prediction.
    Ghalwash MF; Dunker AK; Obradović Z
    Mol Biosyst; 2012 Jan; 8(1):381-91. PubMed ID: 22101336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.