These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 24573606)

  • 41. Characterization of 2,4-dichlorophenoxyacetic acid transport and its relationship with polyamines in Azospirillum brasilense.
    Castro S; Fabra A; Mori G; Rivarola V; Giordano W; Balegno H
    Toxicol Lett; 1996 Jan; 84(1):33-6. PubMed ID: 8597175
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inactivation of chloramphenicol and florfenicol by a novel chloramphenicol hydrolase.
    Tao W; Lee MH; Wu J; Kim NH; Kim JC; Chung E; Hwang EC; Lee SW
    Appl Environ Microbiol; 2012 Sep; 78(17):6295-301. PubMed ID: 22752166
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Arsenate-dependent growth is independent of an ArrA mechanism of arsenate respiration in the termite hindgut isolate Citrobacter sp. strain TSA-1.
    Blum JS; Hernandez-Maldonado J; Redford K; Sing C; Bennett SC; Saltikov CW; Oremland RS
    Can J Microbiol; 2018 Sep; 64(9):619-627. PubMed ID: 30169127
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The interaction of 2,4-dichlorophenoxyacetic acid, ribosomes and polyamines in Azospirillum brasilense.
    Fabra A; Giordano W; Rivarola V; Mori G; Castro S; Balegno H
    Toxicology; 1993 Oct; 83(1-3):19-29. PubMed ID: 8248945
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ArsC3 from Desulfovibrio alaskensis G20, a cation and sulfate-independent highly efficient arsenate reductase.
    Nunes CI; Brás JL; Najmudin S; Moura JJ; Moura I; Carepo MS
    J Biol Inorg Chem; 2014 Dec; 19(8):1277-85. PubMed ID: 25139711
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of a possible respiratory arsenate reductase in Denitrovibrio acetiphilus, a member of the phylum Deferribacteres.
    Denton K; Atkinson MM; Borenstein SP; Carlson A; Carroll T; Cullity K; Demarsico C; Ellowitz D; Gialtouridis A; Gore R; Herleikson A; Ling AY; Martin R; McMahan K; Naksukpaiboon P; Seiz A; Yearwood K; O'Neill J; Wiatrowski H
    Arch Microbiol; 2013 Sep; 195(9):661-70. PubMed ID: 23955655
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antibacterial properties and clinical potential of pleuromutilins.
    Goethe O; Heuer A; Ma X; Wang Z; Herzon SB
    Nat Prod Rep; 2019 Jan; 36(1):220-247. PubMed ID: 29979463
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Methyltransferase Contingencies in the Pathway of Everninomicin D Antibiotics and Analogues.
    Limbrick EM; Yñigez-Gutierrez AE; Dulin CC; Derewacz DK; Spraggins JM; McCulloch KM; Iverson TM; Bachmann BO
    Chembiochem; 2020 Dec; 21(23):3349-3358. PubMed ID: 32686210
    [TBL] [Abstract][Full Text] [Related]  

  • 49. iTRAQ-Based Protein Profiling and Biochemical Analysis of Two Contrasting Rice Genotypes Revealed Their Differential Responses to Salt Stress.
    Hussain S; Zhu C; Bai Z; Huang J; Zhu L; Cao X; Nanda S; Hussain S; Riaz A; Liang Q; Wang L; Li Y; Jin Q; Zhang J
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30696055
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics.
    Long KS; Poehlsgaard J; Kehrenberg C; Schwarz S; Vester B
    Antimicrob Agents Chemother; 2006 Jul; 50(7):2500-5. PubMed ID: 16801432
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification, cloning and characterization of cysK, the gene encoding O-acetylserine (thiol)-lyase from Azospirillum brasilense, which is involved in tellurite resistance.
    Ramírez A; Castañeda M; Xiqui ML; Sosa A; Baca BE
    FEMS Microbiol Lett; 2006 Aug; 261(2):272-9. PubMed ID: 16907731
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combined Effect of the Cfr Methyltransferase and Ribosomal Protein L3 Mutations on Resistance to Ribosome-Targeting Antibiotics.
    Pakula KK; Hansen LH; Vester B
    Antimicrob Agents Chemother; 2017 Sep; 61(9):. PubMed ID: 28630201
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of the glutamine synthetase adenylyltransferase of Azospirillum brasilense.
    Van Dommelen A; Spaepen S; Vanderleyden J
    Res Microbiol; 2009 Apr; 160(3):205-12. PubMed ID: 19366628
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A SAM-dependent methyltransferase cotranscribed with arsenate reductase alters resistance to peptidyl transferase center-binding antibiotics in Azospirillum brasilense Sp7.
    Singh S; Singh C; Tripathi AK
    Appl Microbiol Biotechnol; 2014 May; 98(10):4625-36. PubMed ID: 24573606
    [TBL] [Abstract][Full Text] [Related]  

  • 55.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 56.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 57.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 58.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.