BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24574013)

  • 1. DIY 3D printing of custom orthopaedic implants: a proof of concept study.
    Frame M; Leach W
    Surg Technol Int; 2014 Mar; 24():314-7. PubMed ID: 24574013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-assisted template-guided custom-designed 3D-printed implant placement with custom-designed 3D-printed surgical tooling: an in-vitro proof of a novel concept.
    Anssari Moin D; Derksen W; Waars H; Hassan B; Wismeijer D
    Clin Oral Implants Res; 2017 May; 28(5):582-585. PubMed ID: 26992477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection.
    Wong KC; Kumta SM; Geel NV; Demol J
    Comput Aided Surg; 2015; 20(1):14-23. PubMed ID: 26290317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New comprehensive procedure for custom-made total ankle replacements: Medical imaging, joint modeling, prosthesis design, and 3D printing.
    Belvedere C; Siegler S; Fortunato A; Caravaggi P; Liverani E; Durante S; Ensini A; Konow T; Leardini A
    J Orthop Res; 2019 Mar; 37(3):760-768. PubMed ID: 30537247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [COMPUTER ASSISTED DESIGN AND ELECTRON BEAMMELTING RAPID PROTOTYPING METAL THREE-DIMENSIONAL PRINTING TECHNOLOGY FOR PREPARATION OF INDIVIDUALIZED FEMORAL PROSTHESIS].
    Liu H; Weng Y; Zhang Y; Xu N; Tong J; Wang C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Sep; 29(9):1088-91. PubMed ID: 26750005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Printing: An Enabling Technology for IR.
    Sheth R; Balesh ER; Zhang YS; Hirsch JA; Khademhosseini A; Oklu R
    J Vasc Interv Radiol; 2016 Jun; 27(6):859-65. PubMed ID: 27117948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical Applications of 3-Dimensional Printing Technology in Hip Joint.
    Xia RZ; Zhai ZJ; Chang YY; Li HW
    Orthop Surg; 2019 Aug; 11(4):533-544. PubMed ID: 31321905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology.
    Chen J; Zhang Z; Chen X; Zhang C; Zhang G; Xu Z
    J Prosthet Dent; 2014 Nov; 112(5):1088-95.e1. PubMed ID: 24939253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printing in dentistry.
    Dawood A; Marti Marti B; Sauret-Jackson V; Darwood A
    Br Dent J; 2015 Dec; 219(11):521-9. PubMed ID: 26657435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of 3D Printing in Implantable Medical Devices.
    Wang Z; Yang Y
    Biomed Res Int; 2021; 2021():6653967. PubMed ID: 33521128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast and improved method of rapid prototyping for ear prosthesis using portable 3D laser scanner.
    Jamayet NB; Abdullah JY; Rahman AM; Husein A; Alam MK
    J Plast Reconstr Aesthet Surg; 2018 Jun; 71(6):946-953. PubMed ID: 29506954
    [No Abstract]   [Full Text] [Related]  

  • 12. Innovations in 3D printing: a 3D overview from optics to organs.
    Schubert C; van Langeveld MC; Donoso LA
    Br J Ophthalmol; 2014 Feb; 98(2):159-61. PubMed ID: 24288392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional printing in orthopaedic surgery: review of current and future applications.
    Mulford JS; Babazadeh S; Mackay N
    ANZ J Surg; 2016 Sep; 86(9):648-53. PubMed ID: 27071485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An innovative method of ocular prosthesis fabrication by bio-CAD and rapid 3-D printing technology: A pilot study.
    Alam MS; Sugavaneswaran M; Arumaikkannu G; Mukherjee B
    Orbit; 2017 Aug; 36(4):223-227. PubMed ID: 28375653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patient-Specific Orthopaedic Implants.
    Haglin JM; Eltorai AE; Gil JA; Marcaccio SE; Botero-Hincapie J; Daniels AH
    Orthop Surg; 2016 Nov; 8(4):417-424. PubMed ID: 28032697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of design considerations in complex craniofacial reconstruction using patient-specific implants.
    Peel S; Bhatia S; Eggbeer D; Morris DS; Hayhurst C
    Proc Inst Mech Eng H; 2017 Jun; 231(6):509-524. PubMed ID: 28019190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printing for developing patient specific cosmetic prosthetics at the point of care.
    Thomas DJ; Singh D
    Int J Surg; 2020 Aug; 80():241-242. PubMed ID: 32311524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation of a semiautomatic method to design patient-specific instruments for corrective osteotomy of the radius.
    Caiti G; Dobbe JGG; Loenen ACY; Beerens M; Strackee SD; Strijkers GJ; Streekstra GJ
    Int J Comput Assist Radiol Surg; 2019 May; 14(5):829-840. PubMed ID: 30535827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided design and three-dimensional printing in the manufacturing of an ocular prosthesis.
    Ruiters S; Sun Y; de Jong S; Politis C; Mombaerts I
    Br J Ophthalmol; 2016 Jul; 100(7):879-881. PubMed ID: 27121094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-automated fabrication of customized ocular prosthesis with three-dimensional printing and sublimation transfer printing technology.
    Ko J; Kim SH; Baek SW; Chae MK; Yoon JS
    Sci Rep; 2019 Feb; 9(1):2968. PubMed ID: 30814585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.