BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24574051)

  • 1. Phosphorylation of α-tubulin by protein kinase C stimulates microtubule dynamics in human breast cells.
    De S; Tsimounis A; Chen X; Rotenberg SA
    Cytoskeleton (Hoboken); 2014 Apr; 71(4):257-72. PubMed ID: 24574051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of alpha6-tubulin by protein kinase Calpha activates motility of human breast cells.
    Abeyweera TP; Chen X; Rotenberg SA
    J Biol Chem; 2009 Jun; 284(26):17648-56. PubMed ID: 19406749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphomimetic Mutation at Ser165 of α-Tubulin Promotes the Persistence of GTP Caps in Microtubules.
    Maddula V; Holtzman NS; Nagan MC; Rotenberg SA
    Biochemistry; 2022 Jul; 61(14):1508-1516. PubMed ID: 35799350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation state of Ser
    Markovsky E; de Stanchina E; Itzkowitz A; Haimovitz-Friedman A; Rotenberg SA
    Cell Signal; 2018 Dec; 52():74-82. PubMed ID: 30176291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of Cdc42 effector protein-4 (CEP4) by protein kinase C promotes motility of human breast cells.
    Zhao X; Rotenberg SA
    J Biol Chem; 2014 Sep; 289(37):25844-54. PubMed ID: 25086031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein kinase C activation promotes microtubule advance in neuronal growth cones by increasing average microtubule growth lifetimes.
    Kabir N; Schaefer AW; Nakhost A; Sossin WS; Forscher P
    J Cell Biol; 2001 Mar; 152(5):1033-44. PubMed ID: 11238458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zeta isoform of protein kinase C prevents oxidant-induced nuclear factor-kappaB activation and I-kappaBalpha degradation: a fundamental mechanism for epidermal growth factor protection of the microtubule cytoskeleton and intestinal barrier integrity.
    Banan A; Fields JZ; Zhang LJ; Shaikh M; Farhadi A; Keshavarzian A
    J Pharmacol Exp Ther; 2003 Oct; 307(1):53-66. PubMed ID: 12893839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for microtubule nucleation at the Golgi in breast cancer cells.
    Zahn LA; Lundin-Schiller S
    Cytoskeleton (Hoboken); 2024; 81(4-5):193-205. PubMed ID: 37905740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of tubulin polymerization by MAP-2. Control by protein kinase C-mediated phosphorylation at specific sites in the microtubule-binding region.
    Ainsztein AM; Purich DL
    J Biol Chem; 1994 Nov; 269(45):28465-71. PubMed ID: 7961787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of microtubule organization during interphase and M phase.
    Shiina N; Tsukita S
    Cell Struct Funct; 1999 Oct; 24(5):385-91. PubMed ID: 15216896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The formin mDia regulates GSK3beta through novel PKCs to promote microtubule stabilization but not MTOC reorientation in migrating fibroblasts.
    Eng CH; Huckaba TM; Gundersen GG
    Mol Biol Cell; 2006 Dec; 17(12):5004-16. PubMed ID: 16987962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein Kinase C-ζ stimulates colorectal cancer cell carcinogenesis via PKC-ζ/Rac1/Pak1/β-Catenin signaling cascade.
    Islam SMA; Patel R; Acevedo-Duncan M
    Biochim Biophys Acta Mol Cell Res; 2018 Apr; 1865(4):650-664. PubMed ID: 29408512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basal endothelial nitric oxide synthase (eNOS) phosphorylation on Ser(1177) occurs in a stable microtubule- and tubulin acetylation-dependent manner.
    Giustiniani J; Couloubaly S; Baillet A; Pourci ML; Cantaloube I; Fourniat C; Paul JL; Poüs C
    Exp Cell Res; 2009 Dec; 315(20):3509-20. PubMed ID: 19632222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtubule organization and the effects of GFP-tubulin expression in dictyostelium discoideum.
    Kimble M; Kuzmiak C; McGovern KN; de Hostos EL
    Cell Motil Cytoskeleton; 2000 Sep; 47(1):48-62. PubMed ID: 11002310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A centrosomal protein FOR20 regulates microtubule assembly dynamics and plays a role in cell migration.
    Srivastava S; Panda D
    Biochem J; 2017 Aug; 474(16):2841-2859. PubMed ID: 28694353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RAC1 GTP-ase signals Wnt-beta-catenin pathway mediated integrin-directed metastasis-associated tumor cell phenotypes in triple negative breast cancers.
    De P; Carlson JH; Jepperson T; Willis S; Leyland-Jones B; Dey N
    Oncotarget; 2017 Jan; 8(2):3072-3103. PubMed ID: 27902969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative image analysis identifies pVHL as a key regulator of microtubule dynamic instability.
    Thoma CR; Matov A; Gutbrodt KL; Hoerner CR; Smole Z; Krek W; Danuser G
    J Cell Biol; 2010 Sep; 190(6):991-1003. PubMed ID: 20855504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PRKCQ promotes oncogenic growth and anoikis resistance of a subset of triple-negative breast cancer cells.
    Byerly J; Halstead-Nussloch G; Ito K; Katsyv I; Irie HY
    Breast Cancer Res; 2016 Sep; 18(1):95. PubMed ID: 27663795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Centrosome nucleates numerous ephemeral microtubules and only few of them participate in the radial array.
    Alieva IB; Berezinskaya T; Borisy GG; Vorobjev IA
    Cell Biol Int; 2015 Nov; 39(11):1203-16. PubMed ID: 25998195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anticancer mechanism of 7-α-hydroxyfrullanolide on microtubules and computational prediction of its target binding in triple-negative breast cancer cells.
    Chimplee S; Smythe C; Tipmanee V; Sukrong S; Kanokwiroon K
    PeerJ; 2022; 10():e13508. PubMed ID: 35651747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.