These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 24574112)
1. Incorporating post-translational modifications and unnatural amino acids into high-throughput modeling of protein structures. Nagata K; Randall A; Baldi P Bioinformatics; 2014 Jun; 30(12):1681-9. PubMed ID: 24574112 [TBL] [Abstract][Full Text] [Related]
2. SIDEpro: a novel machine learning approach for the fast and accurate prediction of side-chain conformations. Nagata K; Randall A; Baldi P Proteins; 2012 Jan; 80(1):142-53. PubMed ID: 22072531 [TBL] [Abstract][Full Text] [Related]
3. A curated rotamer library for common post-translational modifications of proteins. Zhang O; Naik SA; Liu ZH; Forman-Kay J; Head-Gordon T Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38995731 [TBL] [Abstract][Full Text] [Related]
4. Modeling Side Chains in the Three-Dimensional Structure of Proteins for Post-Translational Modifications. Petrovskiy DV; Nikolsky KS; Rudnev VR; Kulikova LI; Butkova TV; Malsagova KA; Kopylov AT; Kaysheva AL Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686234 [TBL] [Abstract][Full Text] [Related]
5. AutoMotif server: prediction of single residue post-translational modifications in proteins. Plewczynski D; Tkacz A; Wyrwicz LS; Rychlewski L Bioinformatics; 2005 May; 21(10):2525-7. PubMed ID: 15728119 [TBL] [Abstract][Full Text] [Related]
6. A Curated Rotamer Library for Common Post-Translational Modifications of Proteins. Zhang O; Naik SA; Liu ZH; Forman-Kay J; Head-Gordon T ArXiv; 2024 May; ():. PubMed ID: 38764597 [TBL] [Abstract][Full Text] [Related]
7. Toward the Accuracy and Speed of Protein Side-Chain Packing: A Systematic Study on Rotamer Libraries. Huang X; Pearce R; Zhang Y J Chem Inf Model; 2020 Jan; 60(1):410-420. PubMed ID: 31851497 [TBL] [Abstract][Full Text] [Related]
8. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Blom N; Sicheritz-Pontén T; Gupta R; Gammeltoft S; Brunak S Proteomics; 2004 Jun; 4(6):1633-49. PubMed ID: 15174133 [TBL] [Abstract][Full Text] [Related]
9. Post-translational modifications in the Protein Data Bank. Schofield LC; Dialpuri JS; Murshudov GN; Agirre J Acta Crystallogr D Struct Biol; 2024 Sep; 80(Pt 9):647-660. PubMed ID: 39207896 [TBL] [Abstract][Full Text] [Related]
10. dbPTM: an information repository of protein post-translational modification. Lee TY; Huang HD; Hung JH; Huang HY; Yang YS; Wang TH Nucleic Acids Res; 2006 Jan; 34(Database issue):D622-7. PubMed ID: 16381945 [TBL] [Abstract][Full Text] [Related]
11. Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations. Porebski PJ; Cymborowski M; Pasenkiewicz-Gierula M; Minor W Acta Crystallogr D Struct Biol; 2016 Feb; 72(Pt 2):266-80. PubMed ID: 26894674 [TBL] [Abstract][Full Text] [Related]
12. Computational refinement of post-translational modifications predicted from tandem mass spectrometry. Chung C; Liu J; Emili A; Frey BJ Bioinformatics; 2011 Mar; 27(6):797-806. PubMed ID: 21258065 [TBL] [Abstract][Full Text] [Related]
13. Impact of Nonsynonymous Single-Nucleotide Variations on Post-Translational Modification Sites in Human Proteins. Gulzar N; Dingerdissen H; Yan C; Mazumder R Methods Mol Biol; 2017; 1558():159-190. PubMed ID: 28150238 [TBL] [Abstract][Full Text] [Related]
14. Exploring the sequence context of phosphorylatable amino acids: the contribution of the upgraded MAPRes tool. Iqbal Z; Hoessli DC; Qazi WM; Ahmad M; Shakoori AR; Nasir-ud-Din J Cell Biochem; 2015 Mar; 116(3):370-9. PubMed ID: 25258092 [TBL] [Abstract][Full Text] [Related]
15. Investigation and identification of functional post-translational modification sites associated with drug binding and protein-protein interactions. Su MG; Weng JT; Hsu JB; Huang KY; Chi YH; Lee TY BMC Syst Biol; 2017 Dec; 11(Suppl 7):132. PubMed ID: 29322920 [TBL] [Abstract][Full Text] [Related]
16. Structural Analysis of PTM Hotspots (SAPH-ire)--A Quantitative Informatics Method Enabling the Discovery of Novel Regulatory Elements in Protein Families. Dewhurst HM; Choudhury S; Torres MP Mol Cell Proteomics; 2015 Aug; 14(8):2285-97. PubMed ID: 26070665 [TBL] [Abstract][Full Text] [Related]
17. Combining machine learning with structure-based protein design to predict and engineer post-translational modifications of proteins. Ertelt M; Mulligan VK; Maguire JB; Lyskov S; Moretti R; Schiffner T; Meiler J; Schoeder CT PLoS Comput Biol; 2024 Mar; 20(3):e1011939. PubMed ID: 38484014 [TBL] [Abstract][Full Text] [Related]
18. Improved modeling of side-chains in proteins with rotamer-based methods: a flexible rotamer model. Mendes J; Baptista AM; Carrondo MA; Soares CM Proteins; 1999 Dec; 37(4):530-43. PubMed ID: 10651269 [TBL] [Abstract][Full Text] [Related]
19. Vienna-PTM web server: a toolkit for MD simulations of protein post-translational modifications. Margreitter C; Petrov D; Zagrovic B Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W422-6. PubMed ID: 23703210 [TBL] [Abstract][Full Text] [Related]
20. MeMo: a web tool for prediction of protein methylation modifications. Chen H; Xue Y; Huang N; Yao X; Sun Z Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W249-53. PubMed ID: 16845004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]