These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 24574244)
1. In situ total X-ray scattering study of WO₃ nanoparticle formation under hydrothermal conditions. Saha D; Jensen KM; Tyrsted C; Bøjesen ED; Mamakhel AH; Dippel AC; Christensen M; Iversen BB Angew Chem Int Ed Engl; 2014 Apr; 53(14):3667-70. PubMed ID: 24574244 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study. Jensen KM; Andersen HL; Tyrsted C; Bøjesen ED; Dippel AC; Lock N; Billinge SJ; Iversen BB; Christensen M ACS Nano; 2014 Oct; 8(10):10704-14. PubMed ID: 25256366 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for L-dopa bio-sensing applications. Hariharan V; Radhakrishnan S; Parthibavarman M; Dhilipkumar R; Sekar C Talanta; 2011 Sep; 85(4):2166-74. PubMed ID: 21872074 [TBL] [Abstract][Full Text] [Related]
4. In situ studies of solvothermal synthesis of energy materials. Jensen KM; Tyrsted C; Bremholm M; Iversen BB ChemSusChem; 2014 Jun; 7(6):1594-611. PubMed ID: 24599741 [TBL] [Abstract][Full Text] [Related]
5. WO3 nanorods created by self-assembly of highly crystalline nanowires under hydrothermal conditions. Navarro JR; Mayence A; Andrade J; Lerouge F; Chaput F; Oleynikov P; Bergström L; Parola S; Pawlicka A Langmuir; 2014 Sep; 30(34):10487-92. PubMed ID: 25105229 [TBL] [Abstract][Full Text] [Related]
6. Revealing the mechanisms behind SnO2 nanoparticle formation and growth during hydrothermal synthesis: an in situ total scattering study. Jensen KM; Christensen M; Juhas P; Tyrsted C; Bøjesen ED; Lock N; Billinge SJ; Iversen BB J Am Chem Soc; 2012 Apr; 134(15):6785-92. PubMed ID: 22420861 [TBL] [Abstract][Full Text] [Related]
7. Understanding the formation and evolution of ceria nanoparticles under hydrothermal conditions. Tyrsted C; Jensen KM; Bøjesen ED; Lock N; Christensen M; Billinge SJ; Brummerstedt Iversen B Angew Chem Int Ed Engl; 2012 Sep; 51(36):9030-3. PubMed ID: 22893454 [TBL] [Abstract][Full Text] [Related]
8. Static and Dynamical Structural Investigations of Metal-Oxide Nanocrystals by Powder X-ray Diffraction: Colloidal Tungsten Oxide as a Case Study. Caliandro R; Sibillano T; Belviso BD; Scarfiello R; Hanson JC; Dooryhee E; Manca M; Cozzoli PD; Giannini C Chemphyschem; 2016 Mar; 17(5):699-709. PubMed ID: 26756645 [TBL] [Abstract][Full Text] [Related]
9. Influence of the Precursor Structure on the Formation of Tungsten Oxide Polymorphs. Juelsholt M; Aalling-Frederiksen O; Lindahl Christiansen T; Kjær ETS; Lefeld N; Kirsch A; Jensen KMØ Inorg Chem; 2023 Sep; 62(37):14949-14958. PubMed ID: 37658472 [TBL] [Abstract][Full Text] [Related]
10. Watching nanoparticles form: an in situ (small-/wide-angle X-ray scattering/total scattering) study of the growth of yttria-stabilised zirconia in supercritical fluids. Tyrsted C; Pauw BR; Jensen KM; Becker J; Christensen M; Iversen BB Chemistry; 2012 Apr; 18(18):5759-66. PubMed ID: 22447391 [TBL] [Abstract][Full Text] [Related]
11. Influence of synthesis methods on tungsten dispersion, structural deformation, and surface acidity in binary WO3-ZrO2 system. Cortés-Jácome MA; Toledo JA; Angeles-Chavez C; Aguilar M; Wang JA J Phys Chem B; 2005 Dec; 109(48):22730-9. PubMed ID: 16853962 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, structure, and characterization of two new polar sodium tungsten selenites: Na2(WO3)3(SeO3)·2H2O and Na6(W6O19)(SeO3)2. Nguyen SD; Halasyamani PS Inorg Chem; 2013 Mar; 52(5):2637-47. PubMed ID: 23425251 [TBL] [Abstract][Full Text] [Related]
13. Strontium adsorption on tantalum-doped hexagonal tungsten oxide. Li X; Mu W; Xie X; Liu B; Tang H; Zhou G; Wei H; Jian Y; Luo S J Hazard Mater; 2014 Jan; 264():386-94. PubMed ID: 24316810 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and structural investigations of gel metal oxide composites WO₃-ZrO₂, WO₃-TiO₂, WO₃-ZrO₂-SiO₂, and their evaluation as materials for the preparation of ¹⁸⁸W/¹⁸⁸Re generator. Iller E; Wawszczak D; Konior M; Polkowska-Motrenko H; Milczarek JJ; Górski L Appl Radiat Isot; 2013 May; 75():115-27. PubMed ID: 23501361 [TBL] [Abstract][Full Text] [Related]
15. Pulsed supercritical synthesis of anatase TiO₂ nanoparticles in a water-isopropanol mixture studied by in situ powder X-ray diffraction. Rostgaard Eltzholtz J; Tyrsted C; Ørnsbjerg Jensen KM; Bremholm M; Christensen M; Becker-Christensen J; Brummerstedt Iversen B Nanoscale; 2013 Mar; 5(6):2372-8. PubMed ID: 23396539 [TBL] [Abstract][Full Text] [Related]
16. In situ synchrotron X-ray total scattering measurements and analysis of colloidal CsPbX Greenberg MW; Lin CH; Chodankar S; Ghose SK J Synchrotron Radiat; 2023 Nov; 30(Pt 6):1092-1099. PubMed ID: 37738031 [TBL] [Abstract][Full Text] [Related]
17. Photoelectrochemical water oxidation on photoanodes fabricated with hexagonal nanoflower and nanoblock WO3. Wang N; Wang D; Li M; Shi J; Li C Nanoscale; 2014 Feb; 6(4):2061-6. PubMed ID: 24384843 [TBL] [Abstract][Full Text] [Related]
18. Unravelling the complex formation mechanism of HfO Christensen RS; Kløve M; Roelsgaard M; Sommer S; Iversen BB Nanoscale; 2021 Aug; 13(29):12711-12719. PubMed ID: 34477621 [TBL] [Abstract][Full Text] [Related]
19. Growth of (WO3)n rectangular structures through a LMO-organic precursor route. Pang S; Jian F; Wang L Inorg Chem; 2008 Jan; 47(1):344-8. PubMed ID: 18052373 [TBL] [Abstract][Full Text] [Related]
20. Strain accommodation by facile WO₆ octahedral distortion and tilting during WO₃ heteroepitaxy on SrTiO₃(001). Du Y; Gu M; Varga T; Wang C; Bowden ME; Chambers SA ACS Appl Mater Interfaces; 2014 Aug; 6(16):14253-8. PubMed ID: 25058665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]