BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24574528)

  • 1. Selective unfolding of one Ribonuclease H domain of HIV reverse transcriptase is linked to homodimer formation.
    Zheng X; Pedersen LC; Gabel SA; Mueller GA; Cuneo MJ; DeRose EF; Krahn JM; London RE
    Nucleic Acids Res; 2014 Apr; 42(8):5361-77. PubMed ID: 24574528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unfolding the HIV-1 reverse transcriptase RNase H domain--how to lose a molecular tug-of-war.
    Zheng X; Pedersen LC; Gabel SA; Mueller GA; DeRose EF; London RE
    Nucleic Acids Res; 2016 Feb; 44(4):1776-88. PubMed ID: 26773054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric conformational maturation of HIV-1 reverse transcriptase.
    Zheng X; Perera L; Mueller GA; DeRose EF; London RE
    Elife; 2015 Jun; 4():. PubMed ID: 26037594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial domain organization in the HIV-1 reverse transcriptase p66 homodimer precursor probed by double electron-electron resonance EPR.
    Schmidt T; Schwieters CD; Clore GM
    Proc Natl Acad Sci U S A; 2019 Sep; 116(36):17809-17816. PubMed ID: 31383767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of drivers for the metamorphic transition of HIV-1 reverse transcriptase.
    Zheng X; Mueller GA; Kim K; Perera L; DeRose EF; London RE
    Biochem J; 2017 Sep; 474(19):3321-3338. PubMed ID: 28811321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The p66 immature precursor of HIV-1 reverse transcriptase.
    Sharaf NG; Poliner E; Slack RL; Christen MT; Byeon IJ; Parniak MA; Gronenborn AM; Ishima R
    Proteins; 2014 Oct; 82(10):2343-52. PubMed ID: 24771554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting the Structural Maturation Pathway of HIV-1 Reverse Transcriptase.
    Kirby TW; Gabel SA; DeRose EF; Perera L; Krahn JM; Pedersen LC; London RE
    Biomolecules; 2023 Nov; 13(11):. PubMed ID: 38002285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the Interaction between HIV-1 Protease and the Homodimeric p66/p66' Reverse Transcriptase Precursor by Double Electron-Electron Resonance EPR Spectroscopy.
    Schmidt T; Louis JM; Clore GM
    Chembiochem; 2020 Nov; 21(21):3051-3055. PubMed ID: 32558168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homodimerization of the p51 subunit of HIV-1 reverse transcriptase.
    Zheng X; Mueller GA; Cuneo MJ; Derose EF; London RE
    Biochemistry; 2010 Apr; 49(13):2821-33. PubMed ID: 20180596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of tRNA on the Maturation of HIV-1 Reverse Transcriptase.
    Ilina TV; Slack RL; Elder JH; Sarafianos SG; Parniak MA; Ishima R
    J Mol Biol; 2018 Jun; 430(13):1891-1900. PubMed ID: 29751015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HIV-1 Reverse Transcriptase: A Metamorphic Protein with Three Stable States.
    London RE
    Structure; 2019 Mar; 27(3):420-426. PubMed ID: 30639227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ribonuclease H activity of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2 is affected by the thumb subdomain of the small protein subunits.
    Sevilya Z; Loya S; Hughes SH; Hizi A
    J Mol Biol; 2001 Aug; 311(5):957-71. PubMed ID: 11531332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative domain orientation of the L289K HIV-1 reverse transcriptase monomer.
    Xi Z; Ilina TV; Guerrero M; Fan L; Sluis-Cremer N; Wang YX; Ishima R
    Protein Sci; 2022 May; 31(5):e4307. PubMed ID: 35481647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structural dynamics of HIV-1 reverse transcriptase heterodimer.
    Seckler JM; Howard KJ; Barkley MD; Wintrode PL
    Biochemistry; 2009 Aug; 48(32):7646-55. PubMed ID: 19594135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational Changes in HIV-1 Reverse Transcriptase that Facilitate Its Maturation.
    Slack RL; Ilina TV; Xi Z; Giacobbi NS; Kawai G; Parniak MA; Sarafianos SG; Sluis Cremer N; Ishima R
    Structure; 2019 Oct; 27(10):1581-1593.e3. PubMed ID: 31471129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collective motions in HIV-1 reverse transcriptase: examination of flexibility and enzyme function.
    Bahar I; Erman B; Jernigan RL; Atilgan AR; Covell DG
    J Mol Biol; 1999 Jan; 285(3):1023-37. PubMed ID: 9887265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The β1'-β2' Motif of the RNase H Domain of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Is Responsible for Conferring Open Conformation to the p66 Subunit by Displacing the Connection Domain from the Polymerase Cleft.
    Pandey AK; Dixit U; Kholodovych V; Comollo TW; Pandey VN
    Biochemistry; 2017 Jul; 56(27):3434-3442. PubMed ID: 28627879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human immunodeficiency virus type 1 reverse transcriptase dimer destabilization by 1-[Spiro[4"-amino-2",2" -dioxo-1",2" -oxathiole-5",3'-[2', 5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]]]-3-ethylthy mine.
    Sluis-Cremer N; Dmitrienko GI; Balzarini J; Camarasa MJ; Parniak MA
    Biochemistry; 2000 Feb; 39(6):1427-33. PubMed ID: 10684624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The N348I mutation at the connection subdomain of HIV-1 reverse transcriptase decreases binding to nevirapine.
    Schuckmann MM; Marchand B; Hachiya A; Kodama EN; Kirby KA; Singh K; Sarafianos SG
    J Biol Chem; 2010 Dec; 285(49):38700-9. PubMed ID: 20876531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutagenesis of cysteine 280 of the reverse transcriptase of human immunodeficiency virus type-1: the effects on the ribonuclease H activity.
    Sevilya Z; Loya S; Duvshani A; Adir N; Hizi A
    J Mol Biol; 2003 Mar; 327(1):19-30. PubMed ID: 12614605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.