These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 24574903)
1. Variational solutions and random dynamical systems to SPDEs perturbed by fractional Gaussian noise. Zeng C; Yang Q; Cao J ScientificWorldJournal; 2014; 2014():601327. PubMed ID: 24574903 [TBL] [Abstract][Full Text] [Related]
2. A solution theory for a general class of SPDEs. Süß A; Waurick M Stoch Partial Differ Equ; 2017; 5(2):278-318. PubMed ID: 30931235 [TBL] [Abstract][Full Text] [Related]
3. Variational mean-field algorithm for efficient inference in large systems of stochastic differential equations. Vrettas MD; Opper M; Cornford D Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012148. PubMed ID: 25679611 [TBL] [Abstract][Full Text] [Related]
4. Existence and uniqueness of solution for a class of stochastic differential equations. Cao J; Huang Z; Zeng C ScientificWorldJournal; 2013; 2013():132923. PubMed ID: 24174909 [TBL] [Abstract][Full Text] [Related]
5. Discovering transition phenomena from data of stochastic dynamical systems with Lévy noise. Lu Y; Duan J Chaos; 2020 Sep; 30(9):093110. PubMed ID: 33003930 [TBL] [Abstract][Full Text] [Related]
6. Exponential stability for neutral stochastic functional partial differential equations driven by Brownian motion and fractional Brownian motion. Zhang X; Ruan D J Inequal Appl; 2018; 2018(1):201. PubMed ID: 30839575 [TBL] [Abstract][Full Text] [Related]
7. Stability of nonlinear Dirichlet BVPs governed by fractional Laplacian. Bors D ScientificWorldJournal; 2014; 2014():920537. PubMed ID: 24723837 [TBL] [Abstract][Full Text] [Related]
8. Couple of the variational iteration method and fractional-order Legendre functions method for fractional differential equations. Yin F; Song J; Leng H; Lu F ScientificWorldJournal; 2014; 2014():928765. PubMed ID: 24511303 [TBL] [Abstract][Full Text] [Related]
9. Family of Gaussian wavepacket dynamics methods from the perspective of a nonlinear Schrödinger equation. J L Vaníček J J Chem Phys; 2023 Jul; 159(1):. PubMed ID: 37417753 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of stochastic differential equations with memory driven by colored noise. Liu R; Caraballo T Chaos; 2024 Oct; 34(10):. PubMed ID: 39361815 [TBL] [Abstract][Full Text] [Related]
11. Modified fractional variational iteration method for solving the generalized time-space fractional Schrödinger equation. Hong B; Lu D ScientificWorldJournal; 2014; 2014():964643. PubMed ID: 25276865 [TBL] [Abstract][Full Text] [Related]
12. A stochastic modeling methodology based on weighted Wiener chaos and Malliavin calculus. Wan X; Rozovskii B; Karniadakis GE Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14189-94. PubMed ID: 19666498 [TBL] [Abstract][Full Text] [Related]
13. Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications. Ding XL; Nieto JJ Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265151 [TBL] [Abstract][Full Text] [Related]
14. Operator differential-algebraic equations with noise arising in fluid dynamics. Altmann R; Levajković T; Mena H Mon Hefte Math; 2017; 182(4):741-780. PubMed ID: 32226140 [TBL] [Abstract][Full Text] [Related]
15. Some approximation results for mild solutions of stochastic fractional order evolution equations driven by Gaussian noise. Fahim K; Hausenblas E; Kovács M Stoch Partial Differ Equ; 2023; 11(3):1044-1088. PubMed ID: 37551409 [TBL] [Abstract][Full Text] [Related]
16. Newton's method for nonlinear stochastic wave equations driven by one-dimensional Brownian motion. Leszczynski H; Wrzosek M Math Biosci Eng; 2017 Feb; 14(1):237-248. PubMed ID: 27879130 [TBL] [Abstract][Full Text] [Related]
17. An averaging principle for fractional stochastic differential equations with Lévy noise. Xu W; Duan J; Xu W Chaos; 2020 Aug; 30(8):083126. PubMed ID: 32872803 [TBL] [Abstract][Full Text] [Related]
18. Effective action for stochastic partial differential equations. Hochberg D; Molina-París C; Pérez-Mercader J; Visser M Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt A):6343-60. PubMed ID: 11970549 [TBL] [Abstract][Full Text] [Related]
19. An order approach to SPDEs with antimonotone terms. Scarpa L; Stefanelli U Stoch Partial Differ Equ; 2020; 8(4):819-832. PubMed ID: 33194533 [TBL] [Abstract][Full Text] [Related]
20. A stochastic parabolic model of MEMS driven by fractional Brownian motion. Drosinou O; Nikolopoulos CV; Matzavinos A; Kavallaris NI J Math Biol; 2023 Apr; 86(5):73. PubMed ID: 37039885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]