These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 24574970)
41. Disruption of neuronal function by soluble hyperphosphorylated tau in a Drosophila model of tauopathy. Cowan CM; Chee F; Shepherd D; Mudher A Biochem Soc Trans; 2010 Apr; 38(2):564-70. PubMed ID: 20298222 [TBL] [Abstract][Full Text] [Related]
42. Extra virgin olive oil improves synaptic activity, short-term plasticity, memory, and neuropathology in a tauopathy model. Lauretti E; Nenov M; Dincer O; Iuliano L; Praticò D Aging Cell; 2020 Jan; 19(1):e13076. PubMed ID: 31762202 [TBL] [Abstract][Full Text] [Related]
43. NAP (davunetide) preferential interaction with dynamic 3-repeat Tau explains differential protection in selected tauopathies. Ivashko-Pachima Y; Maor-Nof M; Gozes I PLoS One; 2019; 14(3):e0213666. PubMed ID: 30865715 [TBL] [Abstract][Full Text] [Related]
44. Intracellular Trafficking Mechanisms of Synaptic Dysfunction in Alzheimer's Disease. Perdigão C; Barata MA; Araújo MN; Mirfakhar FS; Castanheira J; Guimas Almeida C Front Cell Neurosci; 2020; 14():72. PubMed ID: 32362813 [TBL] [Abstract][Full Text] [Related]
45. Heterogeneous Association of Alzheimer's Disease-Linked Amyloid-β and Amyloid-β Protein Precursor with Synapses. Willén K; Sroka A; Takahashi RH; Gouras GK J Alzheimers Dis; 2017; 60(2):511-524. PubMed ID: 28869466 [TBL] [Abstract][Full Text] [Related]
46. Mitochondrial Aspects of Synaptic Dysfunction in Alzheimer's Disease. Cai Q; Tammineni P J Alzheimers Dis; 2017; 57(4):1087-1103. PubMed ID: 27767992 [TBL] [Abstract][Full Text] [Related]
47. Zhang Q; Xia Y; Luo H; Huang S; Wang Y; Shentu Y; Mahaman YAR; Huang F; Ke D; Wang Q; Liu R; Wang JZ; Zhang B; Wang X Front Mol Neurosci; 2018; 11():437. PubMed ID: 30542264 [No Abstract] [Full Text] [Related]
49. Region-specific depletion of synaptic mitochondria in the brains of patients with Alzheimer's disease. Pickett EK; Rose J; McCrory C; McKenzie CA; King D; Smith C; Gillingwater TH; Henstridge CM; Spires-Jones TL Acta Neuropathol; 2018 Nov; 136(5):747-757. PubMed ID: 30191401 [TBL] [Abstract][Full Text] [Related]
50. Characterization of Brain-Penetrant Pyrimidine-Containing Molecules with Differential Microtubule-Stabilizing Activities Developed as Potential Therapeutic Agents for Alzheimer's Disease and Related Tauopathies. Kovalevich J; Cornec AS; Yao Y; James M; Crowe A; Lee VM; Trojanowski JQ; Smith AB; Ballatore C; Brunden KR J Pharmacol Exp Ther; 2016 May; 357(2):432-50. PubMed ID: 26980057 [TBL] [Abstract][Full Text] [Related]
51. Microtubule dynamics and the neurodegenerative triad of Alzheimer's disease: The hidden connection. Brandt R; Bakota L J Neurochem; 2017 Nov; 143(4):409-417. PubMed ID: 28267200 [TBL] [Abstract][Full Text] [Related]
52. Downregulating ANP32A rescues synapse and memory loss via chromatin remodeling in Alzheimer model. Chai GS; Feng Q; Wang ZH; Hu Y; Sun DS; Li XG; Ke D; Li HL; Liu GP; Wang JZ Mol Neurodegener; 2017 May; 12(1):34. PubMed ID: 28472990 [TBL] [Abstract][Full Text] [Related]
53. Tau and amyloid-related pathologies in the entorhinal cortex have divergent effects in the hippocampal circuit. Angulo SL; Orman R; Neymotin SA; Liu L; Buitrago L; Cepeda-Prado E; Stefanov D; Lytton WW; Stewart M; Small SA; Duff KE; Moreno H Neurobiol Dis; 2017 Dec; 108():261-276. PubMed ID: 28860088 [TBL] [Abstract][Full Text] [Related]
54. Selective Disruption of Inhibitory Synapses Leading to Neuronal Hyperexcitability at an Early Stage of Tau Pathogenesis in a Mouse Model. Shimojo M; Takuwa H; Takado Y; Tokunaga M; Tsukamoto S; Minatohara K; Ono M; Seki C; Maeda J; Urushihata T; Minamihisamatsu T; Aoki I; Kawamura K; Zhang MR; Suhara T; Sahara N; Higuchi M J Neurosci; 2020 Apr; 40(17):3491-3501. PubMed ID: 32265258 [TBL] [Abstract][Full Text] [Related]
55. Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. Roberson ED; Halabisky B; Yoo JW; Yao J; Chin J; Yan F; Wu T; Hamto P; Devidze N; Yu GQ; Palop JJ; Noebels JL; Mucke L J Neurosci; 2011 Jan; 31(2):700-11. PubMed ID: 21228179 [TBL] [Abstract][Full Text] [Related]
56. Pre-synaptic C-terminal truncated tau is released from cortical synapses in Alzheimer's disease. Sokolow S; Henkins KM; Bilousova T; Gonzalez B; Vinters HV; Miller CA; Cornwell L; Poon WW; Gylys KH J Neurochem; 2015 May; 133(3):368-79. PubMed ID: 25393609 [TBL] [Abstract][Full Text] [Related]
57. Hyperdynamic microtubules, cognitive deficits, and pathology are improved in tau transgenic mice with low doses of the microtubule-stabilizing agent BMS-241027. Barten DM; Fanara P; Andorfer C; Hoque N; Wong PY; Husted KH; Cadelina GW; Decarr LB; Yang L; Liu V; Fessler C; Protassio J; Riff T; Turner H; Janus CG; Sankaranarayanan S; Polson C; Meredith JE; Gray G; Hanna A; Olson RE; Kim SH; Vite GD; Lee FY; Albright CF J Neurosci; 2012 May; 32(21):7137-45. PubMed ID: 22623658 [TBL] [Abstract][Full Text] [Related]
58. Presynaptic loss of dynamin-related protein 1 impairs synaptic vesicle release and recycling at the mouse calyx of Held. Singh M; Denny H; Smith C; Granados J; Renden R J Physiol; 2018 Dec; 596(24):6263-6287. PubMed ID: 30285293 [TBL] [Abstract][Full Text] [Related]
59. Human tau expression reduces adult neurogenesis in a mouse model of tauopathy. Komuro Y; Xu G; Bhaskar K; Lamb BT Neurobiol Aging; 2015 Jun; 36(6):2034-42. PubMed ID: 25863528 [TBL] [Abstract][Full Text] [Related]
60. Synaptic alterations in the rTg4510 mouse model of tauopathy. Kopeikina KJ; Polydoro M; Tai HC; Yaeger E; Carlson GA; Pitstick R; Hyman BT; Spires-Jones TL J Comp Neurol; 2013 Apr; 521(6):1334-53. PubMed ID: 23047530 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]