These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24575122)

  • 41. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels.
    Schulz MH; Zerbino DR; Vingron M; Birney E
    Bioinformatics; 2012 Apr; 28(8):1086-92. PubMed ID: 22368243
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Read trimming is not required for mapping and quantification of RNA-seq reads at the gene level.
    Liao Y; Shi W
    NAR Genom Bioinform; 2020 Sep; 2(3):lqaa068. PubMed ID: 33575617
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The present and future of de novo whole-genome assembly.
    Sohn JI; Nam JW
    Brief Bioinform; 2018 Jan; 19(1):23-40. PubMed ID: 27742661
    [TBL] [Abstract][Full Text] [Related]  

  • 44. IsoTree: A New Framework for de novo Transcriptome Assembly from RNA-seq Reads.
    Zhao J; Feng H; Zhu D; Zhang C; Xu Y
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):938-948. PubMed ID: 29994455
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A
    Ramberg S; Høyheim B; Østbye TK; Andreassen R
    Front Genet; 2021; 12():656334. PubMed ID: 33986770
    [TBL] [Abstract][Full Text] [Related]  

  • 46. RNA-Seq Library Construction Methods for Transcriptome Analysis.
    Bivens NJ; Zhou M
    Curr Protoc Plant Biol; 2016 May; 1(1):197-215. PubMed ID: 31725988
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms.
    Cerveau N; Jackson DJ
    BMC Bioinformatics; 2016 Dec; 17(1):525. PubMed ID: 27938328
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of
    Picone B; Rhode C; Roodt-Wilding R
    Genom Data; 2016 Dec; 10():165-166. PubMed ID: 27896069
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A consensus approach to vertebrate de novo transcriptome assembly from RNA-seq data: assembly of the duck (Anas platyrhynchos) transcriptome.
    Moreton J; Dunham SP; Emes RD
    Front Genet; 2014; 5():190. PubMed ID: 25009556
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 454 pyrosequencing-based analysis of gene expression profiles in the amphipod Melita plumulosa: transcriptome assembly and toxicant induced changes.
    Hook SE; Twine NA; Simpson SL; Spadaro DA; Moncuquet P; Wilkins MR
    Aquat Toxicol; 2014 Aug; 153():73-88. PubMed ID: 24434169
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.
    Haznedaroglu BZ; Reeves D; Rismani-Yazdi H; Peccia J
    BMC Bioinformatics; 2012 Jul; 13():170. PubMed ID: 22808927
    [TBL] [Abstract][Full Text] [Related]  

  • 52. De novo assembly of transcriptomes and differential gene expression analysis using short-read data from emerging model organisms - a brief guide.
    Jackson DJ; Cerveau N; Posnien N
    Front Zool; 2024 Jun; 21(1):17. PubMed ID: 38902827
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Trimming of sequence reads alters RNA-Seq gene expression estimates.
    Williams CR; Baccarella A; Parrish JZ; Kim CC
    BMC Bioinformatics; 2016 Feb; 17():103. PubMed ID: 26911985
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SAUTE: sequence assembly using target enrichment.
    Souvorov A; Agarwala R
    BMC Bioinformatics; 2021 Jul; 22(1):375. PubMed ID: 34289805
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An updated de novo transcriptome for green ash (Fraxinus pennsylvanica).
    Brungardt JJ; Bock CH
    G3 (Bethesda); 2023 Jun; 13(6):. PubMed ID: 37070792
    [TBL] [Abstract][Full Text] [Related]  

  • 56. De novo likelihood-based measures for comparing genome assemblies.
    Ghodsi M; Hill CM; Astrovskaya I; Lin H; Sommer DD; Koren S; Pop M
    BMC Res Notes; 2013 Aug; 6():334. PubMed ID: 23965294
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DTA-SiST: de novo transcriptome assembly by using simplified suffix trees.
    Zhao J; Feng H; Zhu D; Zhang C; Xu Y
    BMC Bioinformatics; 2019 Dec; 20(Suppl 25):698. PubMed ID: 31874618
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparing de novo transcriptome assembly tools in di- and autotetraploid non-model plant species.
    Madritsch S; Burg A; Sehr EM
    BMC Bioinformatics; 2021 Mar; 22(1):146. PubMed ID: 33752598
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A comparison across non-model animals suggests an optimal sequencing depth for de novo transcriptome assembly.
    Francis WR; Christianson LM; Kiko R; Powers ML; Shaner NC; Haddock SH
    BMC Genomics; 2013 Mar; 14():167. PubMed ID: 23496952
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of short read quality and quantity on a de novo vertebrate transcriptome assembly.
    Garcia TI; Shen Y; Catchen J; Amores A; Schartl M; Postlethwait J; Walter RB
    Comp Biochem Physiol C Toxicol Pharmacol; 2012 Jan; 155(1):95-101. PubMed ID: 21651990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.