These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 24575407)
1. Matrix effects on the stability and antioxidant activity of red cabbage anthocyanins under simulated gastrointestinal digestion. Podsędek A; Redzynia M; Klewicka E; Koziołkiewicz M Biomed Res Int; 2014; 2014():365738. PubMed ID: 24575407 [TBL] [Abstract][Full Text] [Related]
2. Anthocyanins from red cabbage--stability to simulated gastrointestinal digestion. McDougall GJ; Fyffe S; Dobson P; Stewart D Phytochemistry; 2007 May; 68(9):1285-94. PubMed ID: 17382979 [TBL] [Abstract][Full Text] [Related]
3. Influence of Cooking Methods on In Vitro Bioaccessibility of Phenolics, Flavonoids, and Antioxidant Activity of Red Cabbage. Ávila S; Zalamanski S; Tanikawa LM; Kruger CCH; Ferreira SMR Plant Foods Hum Nutr; 2023 Mar; 78(1):124-131. PubMed ID: 36357658 [TBL] [Abstract][Full Text] [Related]
4. Changes in the content and composition of anthocyanins in red cabbage and its antioxidant capacity during fermentation, storage and stewing. Wiczkowski W; Szawara-Nowak D; Topolska J Food Chem; 2015 Jan; 167():115-23. PubMed ID: 25148967 [TBL] [Abstract][Full Text] [Related]
5. Physicochemical stability and in vitro bioaccessibility of phenolic compounds and anthocyanins from Thai rice bran extracts. Peanparkdee M; Patrawart J; Iwamoto S Food Chem; 2020 Nov; 329():127157. PubMed ID: 32504918 [TBL] [Abstract][Full Text] [Related]
6. Cooking techniques improve the levels of bioactive compounds and antioxidant activity in kale and red cabbage. Murador DC; Mercadante AZ; de Rosso VV Food Chem; 2016 Apr; 196():1101-7. PubMed ID: 26593594 [TBL] [Abstract][Full Text] [Related]
7. The impact of red cabbage fermentation on bioavailability of anthocyanins and antioxidant capacity of human plasma. Wiczkowski W; Szawara-Nowak D; Romaszko J Food Chem; 2016 Jan; 190():730-740. PubMed ID: 26213032 [TBL] [Abstract][Full Text] [Related]
8. Co-ingestion of red cabbage with cherry tomato enhances digestive bioaccessibility of anthocyanins but decreases carotenoid bioaccessibility after simulated in vitro gastro-intestinal digestion. Phan MAT; Bucknall MP; Arcot J Food Chem; 2019 Nov; 298():125040. PubMed ID: 31261008 [TBL] [Abstract][Full Text] [Related]
9. Physical character, total polyphenols, anthocyanin profile and antioxidant activity of red cabbage as affected by five processing methods. Tan S; Lan X; Chen S; Zhong X; Li W Food Res Int; 2023 Jul; 169():112929. PubMed ID: 37254355 [TBL] [Abstract][Full Text] [Related]
10. Isolation of High Purity Anthocyanin Monomers from Red Cabbage with Recycling Preparative Liquid Chromatography and Their Photostability. Chen Y; Wang Z; Zhang H; Liu Y; Zhang S; Meng Q; Liu W Molecules; 2018 Apr; 23(5):. PubMed ID: 29695065 [TBL] [Abstract][Full Text] [Related]
11. Enhanced anthocyanin extraction from red cabbage using pulsed electric field processing. Gachovska T; Cassada D; Subbiah J; Hanna M; Thippareddi H; Snow D J Food Sci; 2010 Aug; 75(6):E323-9. PubMed ID: 20722916 [TBL] [Abstract][Full Text] [Related]
12. Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage. Ahmadiani N; Robbins RJ; Collins TM; Giusti MM Food Chem; 2016 Apr; 197(Pt A):900-6. PubMed ID: 26617032 [TBL] [Abstract][Full Text] [Related]
13. New strategy for determination of anthocyanins, polyphenols and antioxidant capacity of Brassica oleracea liquid extract using infrared spectroscopies and multivariate regression. de Oliveira IRN; Roque JV; Maia MP; Stringheta PC; Teófilo RF Spectrochim Acta A Mol Biomol Spectrosc; 2018 Apr; 194():172-180. PubMed ID: 29331819 [TBL] [Abstract][Full Text] [Related]
14. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Proteggente AR; Pannala AS; Paganga G; Van Buren L; Wagner E; Wiseman S; Van De Put F; Dacombe C; Rice-Evans CA Free Radic Res; 2002 Feb; 36(2):217-33. PubMed ID: 11999391 [TBL] [Abstract][Full Text] [Related]
15. Pressurized solvent extraction and monolithic column-HPLC/DAD analysis of anthocyanins in red cabbage. Arapitsas P; Turner C Talanta; 2008 Feb; 74(5):1218-23. PubMed ID: 18371772 [TBL] [Abstract][Full Text] [Related]
16. Bioaccessibility of Polyphenols from Plant-Processing Byproducts of Black Carrot (Daucus carota L.). Kamiloglu S; Capanoglu E; Bilen FD; Gonzales GB; Grootaert C; Van de Wiele T; Van Camp J J Agric Food Chem; 2016 Mar; 64(12):2450-8. PubMed ID: 26262673 [TBL] [Abstract][Full Text] [Related]
17. Influence of fungicide residues and in vitro gastrointestinal digestion on total antioxidant capacity and phenolic fraction of Graciano and Tempranillo red wines. Camara MA; Martínez G; Cermeño S; Zafrilla P; Oliva J J Environ Sci Health B; 2019; 54(12):942-947. PubMed ID: 31407614 [TBL] [Abstract][Full Text] [Related]
18. Role of non-thermal treatments and fermentation with probiotic Lactobacillus plantarum on in vitro bioaccessibility of bioactives from vegetable juice. Dogan K; Akman PK; Tornuk F J Sci Food Agric; 2021 Aug; 101(11):4779-4788. PubMed ID: 33502754 [TBL] [Abstract][Full Text] [Related]
19. Wild pink bayberry fruit: the effect of Xia W; Lin Y; Gong E; Li T; Lian F; Zheng B; Liu R Food Funct; 2021 Mar; 12(5):2126-2136. PubMed ID: 33565559 [TBL] [Abstract][Full Text] [Related]
20. Effect of fermentation on anthocyanin stability and in vitro bioaccessibility during shalgam (şalgam) beverage production. Toktaş B; Bildik F; Özçelik B J Sci Food Agric; 2018 Jun; 98(8):3066-3075. PubMed ID: 29194639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]