These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 2457578)

  • 41. Analysis of a suppressor mutation ssb (kinC) of sur0B20 (spo0A) mutation in Bacillus subtilis reveals that kinC encodes a histidine protein kinase.
    Kobayashi K; Shoji K; Shimizu T; Nakano K; Sato T; Kobayashi Y
    J Bacteriol; 1995 Jan; 177(1):176-82. PubMed ID: 8002615
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cloning and analysis of the Bacillus subtilis rpsD gene, encoding ribosomal protein S4.
    Grundy FJ; Henkin TM
    J Bacteriol; 1990 Nov; 172(11):6372-9. PubMed ID: 1699930
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sporulation gene spoIIB from Bacillus subtilis.
    Margolis PS; Driks A; Losick R
    J Bacteriol; 1993 Jan; 175(2):528-40. PubMed ID: 8419299
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of transcription of the Bacillus subtilis pyrG gene, encoding cytidine triphosphate synthetase.
    Meng Q; Switzer RL
    J Bacteriol; 2001 Oct; 183(19):5513-22. PubMed ID: 11544212
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cloning and sequence of Bacillus subtilis purA and guaA, involved in the conversion of IMP to AMP and GMP.
    Mäntsälä P; Zalkin H
    J Bacteriol; 1992 Mar; 174(6):1883-90. PubMed ID: 1312531
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular cloning and characterization of the Bacillus subtilis spore photoproduct lyase (spl) gene, which is involved in repair of UV radiation-induced DNA damage during spore germination.
    Fajardo-Cavazos P; Salazar C; Nicholson WL
    J Bacteriol; 1993 Mar; 175(6):1735-44. PubMed ID: 8449881
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Translation of the mRNA for the sporulation gene spoIIID of Bacillus subtilis is dependent upon translation of a small upstream open reading frame.
    Decatur A; McMurry MT; Kunkel BN; Losick R
    J Bacteriol; 1997 Feb; 179(4):1324-8. PubMed ID: 9023218
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of a cell division gene from Bacillus subtilis that is required for vegetative and sporulation septum formation.
    Levin PA; Losick R
    J Bacteriol; 1994 Mar; 176(5):1451-9. PubMed ID: 8113187
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The DNA sequence of the gene and genetic control sites for the excreted B. subtilis enzyme beta-glucanase.
    Murphy N; McConnell DJ; Cantwell BA
    Nucleic Acids Res; 1984 Jul; 12(13):5355-67. PubMed ID: 6087283
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of the promoter region of the Bacillus subtilis spoIIE operon.
    Guzmán P; Westpheling J; Youngman P
    J Bacteriol; 1988 Apr; 170(4):1598-609. PubMed ID: 2832371
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sequence analysis of the spo0B locus reveals a polycistronic transcription unit.
    Ferrari FA; Trach K; Hoch JA
    J Bacteriol; 1985 Feb; 161(2):556-62. PubMed ID: 3918016
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The dnaK operon of Bacillus subtilis is heptacistronic.
    Homuth G; Masuda S; Mogk A; Kobayashi Y; Schumann W
    J Bacteriol; 1997 Feb; 179(4):1153-64. PubMed ID: 9023197
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of spo0 mutations on spo0A promoter switching at the initiation of sporulation in Bacillus subtilis.
    Chibazakura T; Kawamura F; Asai K; Takahashi H
    J Bacteriol; 1995 Aug; 177(15):4520-3. PubMed ID: 7543482
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis.
    Hulett FM; Lee J; Shi L; Sun G; Chesnut R; Sharkova E; Duggan MF; Kapp N
    J Bacteriol; 1994 Mar; 176(5):1348-58. PubMed ID: 8113174
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of transcription of the Bacillus subtilis spoIIA locus.
    Wu JJ; Howard MG; Piggot PJ
    J Bacteriol; 1989 Feb; 171(2):692-8. PubMed ID: 2492512
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The complete DNA sequence and regulatory regions of the Bacillus licheniformis spoOH gene.
    Ramakrishna N; Dubnau E; Smith I
    Nucleic Acids Res; 1984 Feb; 12(4):1779-90. PubMed ID: 6322121
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Isolation and sequence of the spo0E gene: its role in initiation of sporulation in Bacillus subtilis.
    Perego M; Hoch JA
    Mol Microbiol; 1987 Jul; 1(1):125-32. PubMed ID: 2838724
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Bacillus subtilis 168 alkaline phosphatase III gene: impact of a phoAIII mutation on total alkaline phosphatase synthesis.
    Bookstein C; Edwards CW; Kapp NV; Hulett FM
    J Bacteriol; 1990 Jul; 172(7):3730-7. PubMed ID: 2113910
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Bacillus subtilis spo0J gene: evidence for involvement in catabolite repression of sporulation.
    Mysliwiec TH; Errington J; Vaidya AB; Bramucci MG
    J Bacteriol; 1991 Mar; 173(6):1911-9. PubMed ID: 1900505
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure and expression of the cytochrome aa3 regulatory gene ctaA of Bacillus subtilis.
    Mueller JP; Taber HW
    J Bacteriol; 1989 Sep; 171(9):4979-86. PubMed ID: 2549007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.