These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 24575845)

  • 1. Magnetism by interfacial hybridization and p-type doping of MoS(2) in Fe(4)N/MoS(2) superlattices: a first-principles study.
    Feng N; Mi W; Cheng Y; Guo Z; Schwingenschlögl U; Bai H
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4587-94. PubMed ID: 24575845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First principles prediction of the magnetic properties of Fe-X₆ (X = S, C, N, O, F) doped monolayer MoS₂.
    Feng N; Mi W; Cheng Y; Guo Z; Schwingenschlögl U; Bai H
    Sci Rep; 2014 Feb; 4():3987. PubMed ID: 24496406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial n-Doping Using an Ultrathin TiO2 Layer for Contact Resistance Reduction in MoS2.
    Kaushik N; Karmakar D; Nipane A; Karande S; Lodha S
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):256-63. PubMed ID: 26649572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unexpected strong magnetism of Cu doped single-layer MoS₂ and its origin.
    Yun WS; Lee JD
    Phys Chem Chem Phys; 2014 May; 16(19):8990-6. PubMed ID: 24695769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the electronic properties of Ti-MoS2 contacts through introducing vacancies in monolayer MoS2.
    Feng LP; Su J; Li DP; Liu ZT
    Phys Chem Chem Phys; 2015 Mar; 17(10):6700-4. PubMed ID: 25679945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorographane: a promising material for bipolar doping of MoS2.
    Çakır D; Peeters FM
    Phys Chem Chem Phys; 2015 Nov; 17(41):27636-41. PubMed ID: 26425786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Study on Electronic Structures of Sc and Ti Contacts with Monolayer and Multilayer MoS2.
    Li Z; Li X; Yang J
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12981-7. PubMed ID: 26018612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene oxide as a promising hole injection layer for MoS₂-based electronic devices.
    Musso T; Kumar PV; Foster AS; Grossman JC
    ACS Nano; 2014 Nov; 8(11):11432-9. PubMed ID: 25347209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induced Magnetism of the MoS
    Ho TH; Hoang HT; Dong HC; Kawazoe Y; Le HM
    ACS Omega; 2020 Jul; 5(26):16139-16148. PubMed ID: 32656436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Few-Layer MoS₂ p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation.
    Nipane A; Karmakar D; Kaushik N; Karande S; Lodha S
    ACS Nano; 2016 Feb; 10(2):2128-37. PubMed ID: 26789206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain tuning of magnetism in Mn doped MoS2 monolayer.
    Qi J; Li X; Chen X; Hu K
    J Phys Condens Matter; 2014 Jun; 26(25):256003. PubMed ID: 24899629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-invasively improving the Schottky barriers of metal-MoS
    Su J; Feng L; Liu S; Liu Z
    Phys Chem Chem Phys; 2017 Aug; 19(31):20582-20592. PubMed ID: 28731119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices.
    Li X; Wu S; Zhou S; Zhu Z
    Nanoscale Res Lett; 2014 Mar; 9(1):110. PubMed ID: 24606964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferromagnetism in Transitional Metal-Doped MoS2 Monolayer.
    Fan XL; An YR; Guo WJ
    Nanoscale Res Lett; 2016 Dec; 11(1):154. PubMed ID: 27000022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photovoltaic Heterojunctions of Fullerenes with MoS2 and WS2 Monolayers.
    Gan LY; Zhang Q; Cheng Y; Schwingenschlögl U
    J Phys Chem Lett; 2014 Apr; 5(8):1445-9. PubMed ID: 26269992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding.
    Nan H; Wang Z; Wang W; Liang Z; Lu Y; Chen Q; He D; Tan P; Miao F; Wang X; Wang J; Ni Z
    ACS Nano; 2014 Jun; 8(6):5738-45. PubMed ID: 24836121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field.
    Lu N; Guo H; Li L; Dai J; Wang L; Mei WN; Wu X; Zeng XC
    Nanoscale; 2014 Mar; 6(5):2879-86. PubMed ID: 24473269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum wells formed in transition-metal dichalcogenide nanosheet-superlattices: stability and electronic structures from first principles.
    Su X; Zhang R; Guo C; Guo M; Ren Z
    Phys Chem Chem Phys; 2014 Jan; 16(4):1393-8. PubMed ID: 24296949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In pursuit of barrierless transition metal dichalcogenides lateral heterojunctions.
    Aierken Y; Sevik C; Gülseren O; Peeters FM; Çakır D
    Nanotechnology; 2018 Jul; 29(29):295202. PubMed ID: 29714168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating structural, electronic, magnetic, and optical properties of Co-doped and Co-X (X = Fe, Mn) co-doped MoS
    Khan MJI; Liu J; Latif A; Majeed I; Ullah H; Asghar M; Ahmad J
    J Mol Model; 2022 Sep; 28(10):310. PubMed ID: 36094571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.