BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24575890)

  • 1. Metabolic engineering for p-coumaryl alcohol production in Escherichia coli by introducing an artificial phenylpropanoid pathway.
    Jansen F; Gillessen B; Mueller F; Commandeur U; Fischer R; Kreuzaler F
    Biotechnol Appl Biochem; 2014; 61(6):646-54. PubMed ID: 24575890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial optimization of synthetic operons for the microbial production of p-coumaryl alcohol with Escherichia coli.
    van Summeren-Wesenhagen PV; Voges R; Dennig A; Sokolowsky S; Noack S; Schwaneberg U; Marienhagen J
    Microb Cell Fact; 2015 Jun; 14():79. PubMed ID: 26062542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lignin biosynthesis and its integration into metabolism.
    Vanholme R; De Meester B; Ralph J; Boerjan W
    Curr Opin Biotechnol; 2019 Apr; 56():230-239. PubMed ID: 30913460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds.
    Clarkson SM; Giannone RJ; Kridelbaugh DM; Elkins JG; Guss AM; Michener JK
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28733280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass.
    Lee JH; Wendisch VF
    J Biotechnol; 2017 Sep; 257():211-221. PubMed ID: 27871872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AtABCG29 is a monolignol transporter involved in lignin biosynthesis.
    Alejandro S; Lee Y; Tohge T; Sudre D; Osorio S; Park J; Bovet L; Lee Y; Geldner N; Fernie AR; Martinoia E
    Curr Biol; 2012 Jul; 22(13):1207-12. PubMed ID: 22704988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol.
    Cai Y; Bhuiya MW; Shanklin J; Liu CJ
    J Biol Chem; 2015 Oct; 290(44):26715-24. PubMed ID: 26378240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Escherichia coli for shikimate pathway derivative production from glucose-xylose co-substrate.
    Fujiwara R; Noda S; Tanaka T; Kondo A
    Nat Commun; 2020 Jan; 11(1):279. PubMed ID: 31937786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic conversion of lignin into renewable chemicals.
    Bugg TD; Rahmanpour R
    Curr Opin Chem Biol; 2015 Dec; 29():10-7. PubMed ID: 26121945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Escherichia coli for microbial synthesis of monolignols.
    Chen Z; Sun X; Li Y; Yan Y; Yuan Q
    Metab Eng; 2017 Jan; 39():102-109. PubMed ID: 27816771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli.
    Vargas-Tah A; Martínez LM; Hernández-Chávez G; Rocha M; Martínez A; Bolívar F; Gosset G
    Microb Cell Fact; 2015 Jan; 14():6. PubMed ID: 25592545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic metabolic pathway for the production of 1-alkenes from lignin-derived molecules.
    Luo J; Lehtinen T; Efimova E; Santala V; Santala S
    Microb Cell Fact; 2019 Mar; 18(1):48. PubMed ID: 30857542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chemical logic of enzymatic lignin degradation.
    Bugg TDH
    Chem Commun (Camb); 2024 Jan; 60(7):804-814. PubMed ID: 38165282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial Production of Natural and Unnatural Monolignols with Escherichia coli.
    Aschenbrenner J; Marx P; Pietruszka J; Marienhagen J
    Chembiochem; 2019 Apr; 20(7):949-954. PubMed ID: 30537293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of novel lignin in biomass crops.
    Vanholme R; Morreel K; Darrah C; Oyarce P; Grabber JH; Ralph J; Boerjan W
    New Phytol; 2012 Dec; 196(4):978-1000. PubMed ID: 23035778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of a bacterial 3-dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency.
    Eudes A; Sathitsuksanoh N; Baidoo EE; George A; Liang Y; Yang F; Singh S; Keasling JD; Simmons BA; Loqué D
    Plant Biotechnol J; 2015 Dec; 13(9):1241-50. PubMed ID: 25583257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Embryophytic is the Biosynthesis of Phenylpropanoids and their Derivatives in Streptophyte Algae?
    de Vries J; de Vries S; Slamovits CH; Rose LE; Archibald JM
    Plant Cell Physiol; 2017 May; 58(5):934-945. PubMed ID: 28340089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing lignin evolution for biotechnological applications.
    Renault H; Werck-Reichhart D; Weng JK
    Curr Opin Biotechnol; 2019 Apr; 56():105-111. PubMed ID: 30439673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli.
    Bai W; Tai YS; Wang J; Wang J; Jambunathan P; Fox KJ; Zhang K
    Metab Eng; 2016 Nov; 38():285-292. PubMed ID: 27697562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.