These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24575890)

  • 21. Metabolic engineering of Escherichia coli for production of 2-Phenylethylacetate from L-phenylalanine.
    Guo D; Zhang L; Pan H; Li X
    Microbiologyopen; 2017 Aug; 6(4):. PubMed ID: 28436122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Whole-Cell Bioconversion Systems for Efficient Synthesis of Monolignols from L-Tyrosine in
    Zhao M; Zhang B; Wu X; Xiao Y
    J Agric Food Chem; 2024 Jul; 72(26):14799-14808. PubMed ID: 38899526
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increase in 4-coumaryl alcohol units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin.
    Ziebell A; Gracom K; Katahira R; Chen F; Pu Y; Ragauskas A; Dixon RA; Davis M
    J Biol Chem; 2010 Dec; 285(50):38961-8. PubMed ID: 20921228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Escherichia coli for biofuel production: bridging the gap from promise to practice.
    Huffer S; Roche CM; Blanch HW; Clark DS
    Trends Biotechnol; 2012 Oct; 30(10):538-45. PubMed ID: 22921756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systems Metabolic Engineering of Escherichia coli.
    Choi KR; Shin JH; Cho JS; Yang D; Lee SY
    EcoSal Plus; 2017 Mar; 7(2):. PubMed ID: 28281437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions.
    Dong NQ; Lin HX
    J Integr Plant Biol; 2021 Jan; 63(1):180-209. PubMed ID: 33325112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular and biochemical basis for stress-induced accumulation of free and bound p-coumaraldehyde in cucumber.
    Varbanova M; Porter K; Lu F; Ralph J; Hammerschmidt R; Jones AD; Day B
    Plant Physiol; 2011 Nov; 157(3):1056-66. PubMed ID: 21940999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biosynthesis of Two Flavones, Apigenin and Genkwanin, in Escherichia coli.
    Lee H; Kim BG; Kim M; Ahn JH
    J Microbiol Biotechnol; 2015 Sep; 25(9):1442-8. PubMed ID: 25975614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three steps in one pot: biosynthesis of 4-hydroxycinnamyl alcohols using immobilized whole cells of two genetically engineered Escherichia coli strains.
    Liu S; Liu J; Hou J; Chao N; Gai Y; Jiang X
    Microb Cell Fact; 2017 Jun; 16(1):104. PubMed ID: 28606145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computationally Prospecting Potential Pathways from Lignin Monomers and Dimers toward Aromatic Compounds.
    Wang L; Maranas CD
    ACS Synth Biol; 2021 May; 10(5):1064-1076. PubMed ID: 33877818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overexpression of SbMyb60 impacts phenylpropanoid biosynthesis and alters secondary cell wall composition in Sorghum bicolor.
    Scully ED; Gries T; Sarath G; Palmer NA; Baird L; Serapiglia MJ; Dien BS; Boateng AA; Ge Z; Funnell-Harris DL; Twigg P; Clemente TE; Sattler SE
    Plant J; 2016 Feb; 85(3):378-95. PubMed ID: 26712107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering Escherichia coli for propionic acid production through the Wood-Werkman cycle.
    Gonzalez-Garcia RA; McCubbin T; Turner MS; Nielsen LK; Marcellin E
    Biotechnol Bioeng; 2020 Jan; 117(1):167-183. PubMed ID: 31556457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from L-tyrosine.
    Wu J; Liu P; Fan Y; Bao H; Du G; Zhou J; Chen J
    J Biotechnol; 2013 Sep; 167(4):404-11. PubMed ID: 23916948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Progress in Metabolic Engineering of
    Ye DY; Moon JH; Jung GY
    J Agric Food Chem; 2023 Jul; 71(29):10916-10931. PubMed ID: 37458388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of cellulosic butyrate and 3-hydroxybutyrate in engineered Escherichia coli.
    Miscevic D; Srirangan K; Kefale T; Abedi D; Moo-Young M; Chou CP
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5215-5230. PubMed ID: 31049621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lignin structure and its engineering.
    Ralph J; Lapierre C; Boerjan W
    Curr Opin Biotechnol; 2019 Apr; 56():240-249. PubMed ID: 30921563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86.
    Mohan K; Phale PS
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206
    [No Abstract]   [Full Text] [Related]  

  • 38. Systems Metabolic Engineering of Escherichia coli.
    Choi KR; Shin JH; Cho JS; Yang D; Lee SY
    EcoSal Plus; 2016 May; 7(1):. PubMed ID: 27223822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1.
    Sainsbury PD; Hardiman EM; Ahmad M; Otani H; Seghezzi N; Eltis LD; Bugg TD
    ACS Chem Biol; 2013 Oct; 8(10):2151-6. PubMed ID: 23898824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi.
    Lubbers RJM; Dilokpimol A; Visser J; Mäkelä MR; Hildén KS; de Vries RP
    Biotechnol Adv; 2019 Nov; 37(7):107396. PubMed ID: 31075306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.