These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 24576005)

  • 41. Recycling of NdFeB magnets employing oxidation, selective leaching, and iron precipitation in an autoclave.
    Emil-Kaya E; Polat B; Stopic S; Gürmen S; Friedrich B
    RSC Adv; 2023 Jan; 13(2):1320-1332. PubMed ID: 36686927
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced Separation of Neodymium and Dysprosium by Nonaqueous Solvent Extraction from a Polyethylene Glycol 200 Phase Using the Neutral Extractant Cyanex 923.
    Dewulf B; Batchu NK; Binnemans K
    ACS Sustain Chem Eng; 2020 Dec; 8(51):19032-19039. PubMed ID: 33457111
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rare earth element recycling from waste nickel-metal hydride batteries.
    Yang X; Zhang J; Fang X
    J Hazard Mater; 2014 Aug; 279():384-8. PubMed ID: 25089667
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dysprosium-free melt-spun permanent magnets.
    Brown DN; Wu Z; He F; Miller DJ; Herchenroeder JW
    J Phys Condens Matter; 2014 Feb; 26(6):064202. PubMed ID: 24468854
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mineral processing simulation based-environmental life cycle assessment for rare earth project development: A case study on the Songwe Hill project.
    Pell R; Wall F; Yan X; Li J; Zeng X
    J Environ Manage; 2019 Nov; 249():109353. PubMed ID: 31493685
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Costs, Substitution, and Material Use: The Case of Rare Earth Magnets.
    Smith BJ; Eggert RG
    Environ Sci Technol; 2018 Mar; 52(6):3803-3811. PubMed ID: 29499609
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chromatographic separation of rare earths from aqueous and ethanolic leachates of NdFeB and SmCo magnets by a supported ionic liquid phase.
    Avdibegović D; Binnemans K
    RSC Adv; 2021 Feb; 11(14):8207-8217. PubMed ID: 35423291
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comprehensive elemental analysis of consumer electronic devices: Rare earth, precious, and critical elements.
    Buechler DT; Zyaykina NN; Spencer CA; Lawson E; Ploss NM; Hua I
    Waste Manag; 2020 Feb; 103():67-75. PubMed ID: 31865037
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Measuring densities of solids and liquids using magnetic levitation: fundamentals.
    Mirica KA; Shevkoplyas SS; Phillips ST; Gupta M; Whitesides GM
    J Am Chem Soc; 2009 Jul; 131(29):10049-58. PubMed ID: 19621960
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha.
    Hopfe S; Flemming K; Lehmann F; Möckel R; Kutschke S; Pollmann K
    Waste Manag; 2017 Apr; 62():211-221. PubMed ID: 28223076
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Framework for resilience in material supply chains, with a case study from the 2010 Rare Earth Crisis.
    Sprecher B; Daigo I; Murakami S; Kleijn R; Vos M; Kramer GJ
    Environ Sci Technol; 2015 Jun; 49(11):6740-50. PubMed ID: 25965803
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vitro cytotoxicity testing of neodymium-iron-boron magnets.
    Donohue VE; McDonald F; Evans R
    J Appl Biomater; 1995; 6(1):69-74. PubMed ID: 7703540
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficient recovery of rare earth elements from discarded NdFeB magnets by mechanical activation coupled with acid leaching.
    Mao F; Zhu N; Zhu W; Liu B; Wu P; Dang Z
    Environ Sci Pollut Res Int; 2022 Apr; 29(17):25532-25543. PubMed ID: 34841488
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Direct Recycling of Nd-Fe-B Magnets Based on the Recovery of Nd
    Xu X; Sturm S; Samardzija Z; Vidmar J; Scancar J; Rozman KZ
    ChemSusChem; 2019 Nov; 12(21):4754-4758. PubMed ID: 31529776
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Concomitant Leaching and Electrochemical Extraction of Rare Earth Elements from Monazite.
    Maes S; Zhuang WQ; Rabaey K; Alvarez-Cohen L; Hennebel T
    Environ Sci Technol; 2017 Feb; 51(3):1654-1661. PubMed ID: 28056169
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Magnetic repulsion of linear accelerator contaminates.
    Butson MJ; Wong TP; Law A; Law M; Mathur JN; Metcalfe PE
    Med Phys; 1996 Jun; 23(6):953-5. PubMed ID: 8798165
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Global environmental cost of using rare earth elements in green energy technologies.
    Golroudbary SR; Makarava I; Kraslawski A; Repo E
    Sci Total Environ; 2022 Aug; 832():155022. PubMed ID: 35390387
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Managing critical materials with a technology-specific stocks and flows model.
    Busch J; Steinberger JK; Dawson DA; Purnell P; Roelich K
    Environ Sci Technol; 2014 Jan; 48(2):1298-305. PubMed ID: 24328245
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigating Metal-Tributyl Phosphate Complexes during Supercritical Fluid Extraction of the NdFeB Magnet Using Density Functional Theory and X-ray Absorption Spectroscopy.
    Zhang J; Chen N; Morozova V; Voznyy O; Azimi G
    Inorg Chem; 2023 May; 62(20):7689-7702. PubMed ID: 37154778
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Clinical evaluation of neodymium-iron-boron (Ne2Fe14B) rare earth magnets in the treatment of mid line diastemas.
    Prasad M; Manoj-Kumar M; Gowri-Sankar S; Chaitanya N; Vivek-Reddy G; Venkatesh N
    J Clin Exp Dent; 2016 Apr; 8(2):e164-71. PubMed ID: 27034757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.