These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 24576090)

  • 1. Aging of running shoes and its effect on mechanical and biomechanical variables: implications for runners.
    Chambon N; Sevrez V; Ly QH; Guéguen N; Berton E; Rao G
    J Sports Sci; 2014; 32(11):1013-22. PubMed ID: 24576090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased vertical impact forces and altered running mechanics with softer midsole shoes.
    Baltich J; Maurer C; Nigg BM
    PLoS One; 2015; 10(4):e0125196. PubMed ID: 25897963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of EVA viscoelastic properties in the protective performance of a sport shoe: computational studies.
    Even-Tzur N; Weisz E; Hirsch-Falk Y; Gefen A
    Biomed Mater Eng; 2006; 16(5):289-99. PubMed ID: 17075164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Durability of running shoes with ethylene vinyl acetate or polyurethane midsoles.
    Wang L; Hong Y; Li JX
    J Sports Sci; 2012 Dec; 30(16):1787-92. PubMed ID: 22967232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-term changes in running mechanics and foot strike pattern after introduction to minimalistic footwear.
    Willson JD; Bjorhus JS; Williams DS; Butler RJ; Porcari JP; Kernozek TW
    PM R; 2014 Jan; 6(1):34-43; quiz 43. PubMed ID: 23999160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a footwear design tool: influence of shoe midsole properties and ground stiffness on the impact force during running.
    Ly QH; Alaoui A; Erlicher S; Baly L
    J Biomech; 2010 Jan; 43(2):310-7. PubMed ID: 19931083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle activity in the leg is tuned in response to impact force characteristics.
    Boyer KA; Nigg BM
    J Biomech; 2004 Oct; 37(10):1583-8. PubMed ID: 15336933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heel-shoe interactions and the durability of EVA foam running-shoe midsoles.
    Verdejo R; Mills NJ
    J Biomech; 2004 Sep; 37(9):1379-86. PubMed ID: 15275845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic and kinetic parameters associated with running in different shoes.
    McNair PJ; Marshall RN
    Br J Sports Med; 1994 Dec; 28(4):256-60. PubMed ID: 7894957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of midsole horizontal and vertical deformation on soft tissue vibrations and bone acceleration during running.
    Trama R; Wannop JW; Smith E; Stefanyshyn DJ
    J Sports Sci; 2023 Jun; 41(11):1047-1055. PubMed ID: 37724576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shoe midsole hardness, sex and age effects on lower extremity kinematics during running.
    Nigg BM; Baltich J; Maurer C; Federolf P
    J Biomech; 2012 Jun; 45(9):1692-7. PubMed ID: 22507350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer simulation of the effects of shoe cushioning on internal and external loading during running impacts.
    Miller RH; Hamill J
    Comput Methods Biomech Biomed Engin; 2009 Aug; 12(4):481-90. PubMed ID: 19225961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic Review of the Role of Footwear Constructions in Running Biomechanics: Implications for Running-Related Injury and Performance.
    Sun X; Lam WK; Zhang X; Wang J; Fu W
    J Sports Sci Med; 2020 Mar; 19(1):20-37. PubMed ID: 32132824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of shoe aging on children running biomechanics.
    Herbaut A; Chavet P; Roux M; Guéguen N; Barbier F; Simoneau-Buessinger E
    Gait Posture; 2017 Jul; 56():123-128. PubMed ID: 28544949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of material characteristics of shoe soles on muscle activation and energy aspects during running.
    Nigg BM; Stefanyshyn D; Cole G; Stergiou P; Miller J
    J Biomech; 2003 Apr; 36(4):569-75. PubMed ID: 12600347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of arch type and footwear on running mechanics.
    Butler RJ; Davis IS; Hamill J
    Am J Sports Med; 2006 Dec; 34(12):1998-2005. PubMed ID: 16902231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of viscoelastic shoe insoles on vertical impact forces in heel-toe running.
    Nigg BM; Herzog W; Read LJ
    Am J Sports Med; 1988; 16(1):70-6. PubMed ID: 3278635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shoe cushioning reduces impact and muscle activation during landings from unexpected, but not self-initiated, drops.
    Fu W; Fang Y; Gu Y; Huang L; Li L; Liu Y
    J Sci Med Sport; 2017 Oct; 20(10):915-920. PubMed ID: 28385562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic and kinetic comparison of running in standard and minimalist shoes.
    Willy RW; Davis IS
    Med Sci Sports Exerc; 2014 Feb; 46(2):318-23. PubMed ID: 23877378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of footwear on high and low arched runners' mechanics during a prolonged run.
    Butler RJ; Hamill J; Davis I
    Gait Posture; 2007 Jul; 26(2):219-25. PubMed ID: 17055729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.