BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 24576200)

  • 1. The effects of read length, quality and quantity on microsatellite discovery and primer development: from Illumina to PacBio.
    Wei N; Bemmels JB; Dick CW
    Mol Ecol Resour; 2014 Sep; 14(5):953-65. PubMed ID: 24576200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microsatellite marker discovery using single molecule real-time circular consensus sequencing on the Pacific Biosciences RS.
    Grohme MA; Soler RF; Wink M; Frohme M
    Biotechniques; 2013 Nov; 55(5):253-6. PubMed ID: 24215640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microsatellite markers from the Ion Torrent: a multi-species contrast to 454 shotgun sequencing.
    Elliott CP; Enright NJ; Allcock RJ; Gardner MG; Meglécz E; Anthony J; Krauss SL
    Mol Ecol Resour; 2014 May; 14(3):554-68. PubMed ID: 24165148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences.
    Zalapa JE; Cuevas H; Zhu H; Steffan S; Senalik D; Zeldin E; McCown B; Harbut R; Simon P
    Am J Bot; 2012 Feb; 99(2):193-208. PubMed ID: 22186186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microsatellite DNA capture from enriched libraries.
    Gonzalez EG; Zardoya R
    Methods Mol Biol; 2013; 1006():67-87. PubMed ID: 23546784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The accuracy, feasibility and challenges of sequencing short tandem repeats using next-generation sequencing platforms.
    Zavodna M; Bagshaw A; Brauning R; Gemmell NJ
    PLoS One; 2014; 9(12):e113862. PubMed ID: 25436869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid and cost-effective approach for the development of polymorphic microsatellites in non-model species using paired-end RAD sequencing.
    Xue DX; Li YL; Liu JX
    Mol Genet Genomics; 2017 Oct; 292(5):1165-1174. PubMed ID: 28634825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ClinQC: a tool for quality control and cleaning of Sanger and NGS data in clinical research.
    Pandey RV; Pabinger S; Kriegner A; Weinhäusel A
    BMC Bioinformatics; 2016 Feb; 17():56. PubMed ID: 26830926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microsatellite development from genome skimming and transcriptome sequencing: comparison of strategies and lessons from frog species.
    Xia Y; Luo W; Yuan S; Zheng Y; Zeng X
    BMC Genomics; 2018 Dec; 19(1):886. PubMed ID: 30526480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency of PacBio long read correction by 2nd generation Illumina sequencing.
    Mahmoud M; Zywicki M; Twardowski T; Karlowski WM
    Genomics; 2019 Jan; 111(1):43-49. PubMed ID: 29268960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of ONT and CCS sequencing technologies on the polyploid genome of a medicinal plant showed that high error rate of ONT reads are not suitable for self-correction.
    Zeng P; Tian Z; Han Y; Zhang W; Zhou T; Peng Y; Hu H; Cai J
    Chin Med; 2022 Aug; 17(1):94. PubMed ID: 35945546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SSR_pipeline: a bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data.
    Miller MP; Knaus BJ; Mullins TD; Haig SM
    J Hered; 2013; 104(6):881-5. PubMed ID: 24052535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QDD version 3.1: a user-friendly computer program for microsatellite selection and primer design revisited: experimental validation of variables determining genotyping success rate.
    Meglécz E; Pech N; Gilles A; Dubut V; Hingamp P; Trilles A; Grenier R; Martin JF
    Mol Ecol Resour; 2014 Nov; 14(6):1302-13. PubMed ID: 24785154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing selection of microsatellite loci from 454 pyrosequencing via post-sequencing bioinformatic analyses.
    Fernandez-Silva I; Toonen RJ
    Methods Mol Biol; 2013; 1006():101-20. PubMed ID: 23546786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome Sequencing.
    Yoshinaga Y; Daum C; He G; O'Malley R
    Methods Mol Biol; 2018; 1775():37-52. PubMed ID: 29876807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lessons learned from microsatellite development for nonmodel organisms using 454 pyrosequencing.
    Schoebel CN; Brodbeck S; Buehler D; Cornejo C; Gajurel J; Hartikainen H; Keller D; Leys M; Ríčanová S; Segelbacher G; Werth S; Csencsics D
    J Evol Biol; 2013 Mar; 26(3):600-11. PubMed ID: 23331991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of next-generation sequencing for the identification of herbal products.
    Lo YT; Shaw PC
    Biotechnol Adv; 2019 Dec; 37(8):107450. PubMed ID: 31521786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of chromosome-arm-specific microsatellite markers in Triticum aestivum (Poaceae) using NGS technology.
    Nie X; Li B; Wang L; Liu P; Biradar SS; Li T; Dolezel J; Edwards D; Luo M; Weining S
    Am J Bot; 2012 Sep; 99(9):e369-71. PubMed ID: 22935363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No assembly required: Full-length MHC class I allele discovery by PacBio circular consensus sequencing.
    Westbrook CJ; Karl JA; Wiseman RW; Mate S; Koroleva G; Garcia K; Sanchez-Lockhart M; O'Connor DH; Palacios G
    Hum Immunol; 2015 Dec; 76(12):891-6. PubMed ID: 26028281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PaSS: a sequencing simulator for PacBio sequencing.
    Zhang W; Jia B; Wei C
    BMC Bioinformatics; 2019 Jun; 20(1):352. PubMed ID: 31226925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.