BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 2457692)

  • 1. Ionic basis of tetanic and post-tetanic potentiation at a mammalian neuromuscular junction.
    Nussinovitch I; Rahamimoff R
    J Physiol; 1988 Feb; 396():435-55. PubMed ID: 2457692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of tetanic and post-tetanic potentiation of miniature end-plate potentials at the frog neuromuscular junction.
    Lev-Tov A; Rahamimoff R
    J Physiol; 1980 Dec; 309():247-73. PubMed ID: 6973021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological differences between strong and weak frog neuromuscular junctions: a study involving tetanic and posttetanic potentiation.
    Pawson PA; Grinnell AD
    J Neurosci; 1990 Jun; 10(6):1769-78. PubMed ID: 2113085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Both augmentation and potentiation occur independently of internal Ca2+ at the frog neuromuscular junction.
    Tanabe N; Kijima H
    Neurosci Lett; 1989 Apr; 99(1-2):147-52. PubMed ID: 2501716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interactions of ouabain with post-tetanic and facilitatory drug potentiations at cat soleus neuromuscular junctions in vivo.
    Riker WF; Okamoto M; Artusio JF
    Neurochem Res; 1990 Apr; 15(4):457-65. PubMed ID: 2167459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic mechanism of post-tetanic potentiation at the neuromuscular junction of the frog.
    Weinreich D
    J Physiol; 1971 Jan; 212(2):431-46. PubMed ID: 4323307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated tonicity increases miniature end-plate potential frequency during tetanic stimulation at frog neuromuscular junction in low calcium and in manganese saline solutions.
    Narita K; Kita H; van der Kloot W
    Brain Res; 1983 Dec; 289(1-2):79-85. PubMed ID: 6318905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quantitative description of tetanic and post-tetanic potentiation of transmitter release at the frog neuromuscular junction.
    Magleby KL; Zengel JE
    J Physiol; 1975 Feb; 245(1):183-208. PubMed ID: 165286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging increases calcium influx at motor nerve terminal.
    Alshuaib WB; Fahim MA
    Int J Dev Neurosci; 1990; 8(6):655-66. PubMed ID: 2126908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-tetanic potentiation of acetylcholine release at the frog neuromuscular junction develops after stimulation in Ca2+-free solutions.
    Misler S; Hurlbut WP
    Proc Natl Acad Sci U S A; 1983 Jan; 80(1):315-9. PubMed ID: 6296872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmitter release at mouse motor nerve terminals mediated by temporary accumulation of intracellular barium.
    Quastel DM; Saint DA
    J Physiol; 1988 Dec; 406():55-73. PubMed ID: 2908184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in miniature endplate potential frequency during repetitive nerve stimulation in the presence of Ca2+, Ba2+, and Sr2+ at the frog neuromuscular junction.
    Zengel JE; Magleby KL
    J Gen Physiol; 1981 May; 77(5):503-29. PubMed ID: 6262429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of 2-(4-phenylpiperidino)cyclohexanol (AH5183) and barium ions on frog neuromuscular transmission.
    Maeno T; Shibuya Y
    J Physiol; 1988 Jul; 401():671-85. PubMed ID: 2845067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cation dependence of posttetanic potentiation of neuromuscular transmission.
    Misler S; Falke L; Martin S
    Am J Physiol; 1987 Jan; 252(1 Pt 1):C55-62. PubMed ID: 3492922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca(2+)-dependent and -independent components of transmitter release at the frog neuromuscular junction.
    Tanabe N; Kijima H
    J Physiol; 1992 Sep; 455():271-89. PubMed ID: 1484356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oscillation period of MEPP frequency at frog neuromuscular junctions is inversely correlated with release efficacy and independent of acute Ca2+ loading.
    Pawson PA; Grinnell AD
    Proc R Soc Lond B Biol Sci; 1989 Sep; 237(1289):489-99. PubMed ID: 2573902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Posttetanic potentiation at the crayfish neuromuscular junction is dependent on both intracellular calcium and sodium ion accumulation.
    Mulkey RM; Zucker RS
    J Neurosci; 1992 Nov; 12(11):4327-36. PubMed ID: 1432097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The thiol-oxidizing agent diamide increases transmitter release by decreasing calcium requirements for neuromuscular transmission in the frog.
    Carlen PL; Kosower EM; Werman R
    Brain Res; 1976 Nov; 117(2):257-76. PubMed ID: 186154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous and evoked transmitter releases after concanavalin A treatment are affected differently by hypertonic low calcium solutions at frog neuromuscular junction.
    Narita K; Kawasaki F; Kita H
    Brain Res; 1990 Mar; 512(1):33-9. PubMed ID: 2337806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Mg2+ on the stimulation-induced changes in transmitter release at the frog neuromuscular junction.
    Tanabe N; Morota A; Kijima H
    Zoolog Sci; 1995 Jun; 12(3):265-70. PubMed ID: 7580810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.