These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24577219)

  • 1. Improving mechanical fatigue resistance by optimizing the nanoporous structure of inkjet-printed Ag electrodes for flexible devices.
    Kim BJ; Haas T; Friederich A; Lee JH; Nam DH; Binder JR; Bauer W; Choi IS; Joo YC; Gruber PA; Kraft O
    Nanotechnology; 2014 Mar; 25(12):125706. PubMed ID: 24577219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue-free, electrically reliable copper electrode with nanohole array.
    Kim BJ; Cho Y; Jung MS; Shin HA; Moon MW; Han HN; Nam KT; Joo YC; Choi IS
    Small; 2012 Nov; 8(21):3300-6. PubMed ID: 22821891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible electroluminescent device with inkjet-printed carbon nanotube electrodes.
    Azoubel S; Shemesh S; Magdassi S
    Nanotechnology; 2012 Aug; 23(34):344003. PubMed ID: 22885854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly reliable ag nanowire flexible transparent electrode with mechanically welded junctions.
    Hwang B; Shin HA; Kim T; Joo YC; Han SM
    Small; 2014 Aug; 10(16):3397-404. PubMed ID: 24789010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel.
    Lee J; Lee P; Lee H; Lee D; Lee SS; Ko SH
    Nanoscale; 2012 Oct; 4(20):6408-14. PubMed ID: 22952107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials.
    Kong D; Le LT; Li Y; Zunino JL; Lee W
    Langmuir; 2012 Sep; 28(37):13467-72. PubMed ID: 22924965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inkjet Printing of High Conductivity, Flexible Graphene Patterns.
    Secor EB; Prabhumirashi PL; Puntambekar K; Geier ML; Hersam MC
    J Phys Chem Lett; 2013 Apr; 4(8):1347-51. PubMed ID: 26282151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh Conductivity and Superior Interfacial Adhesion of a Nanostructured, Photonic-Sintered Copper Membrane for Printed Flexible Hybrid Electronics.
    Kwon YT; Kim YS; Lee Y; Kwon S; Lim M; Song Y; Choa YH; Yeo WH
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44071-44079. PubMed ID: 30452228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured electrochromic films by inkjet printing on large area and flexible transparent silver electrodes.
    Layani M; Darmawan P; Foo WL; Liu L; Kamyshny A; Mandler D; Magdassi S; Lee PS
    Nanoscale; 2014 May; 6(9):4572-6. PubMed ID: 24676234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inkjet printed fractal-connected electrodes with silver nanoparticle ink.
    Vaseem M; Lee KM; Hong AR; Hahn YB
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3300-7. PubMed ID: 22670766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of carbon nanotubes in inkjet printing of conductive polymer suspensions.
    Denneulin A; Bras J; Blayo A; Khelifi B; Roussel-Dherbey F; Neuman C
    Nanotechnology; 2009 Sep; 20(38):385701. PubMed ID: 19713577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Preparation of Ag Nanoparticle and Ink Used for Inkjet Printing of Paper Based Conductive Patterns.
    Cao L; Bai X; Lin Z; Zhang P; Deng S; Du X; Li W
    Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28846637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inkjet-printed lines with well-defined morphologies and low electrical resistance on repellent pore-structured polyimide films.
    Kim C; Nogi M; Suganuma K; Yamato Y
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2168-73. PubMed ID: 22452572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced electrical and mechanical properties of silver nanoplatelet-based conductive features direct printed on a flexible substrate.
    Lee YI; Kim S; Jung SB; Myung NV; Choa YH
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):5908-13. PubMed ID: 23786607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Printed Multicolor High-Contrast Electrochromic Devices.
    Chen BH; Kao SY; Hu CW; Higuchi M; Ho KC; Liao YC
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25069-76. PubMed ID: 26496422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver Mesh Electrodes via Electroless Deposition-Coupled Inkjet-Printing Mask Technology for Flexible Polymer Solar Cells.
    Meng X; Xu Y; Wang Q; Yang X; Guo J; Hu X; Tan L; Chen Y
    Langmuir; 2019 Jul; 35(30):9713-9720. PubMed ID: 31276416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Curing Temperature on Bending Durability of Inkjet-Printed Flexible Silver Electrode.
    Kim NW; Lee DG; Kim KS; Hur S
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33317076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity.
    Shen W; Zhang X; Huang Q; Xu Q; Song W
    Nanoscale; 2014; 6(3):1622-8. PubMed ID: 24337051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compatible Ag
    Wang Y; Hong Y; Zhou G; He W; Gao Z; Wang S; Wang C; Chen Y; Weng Z; Wang Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44811-44819. PubMed ID: 31656075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.