These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 24577452)
1. Is gastrointestinal plasticity in king quail (Coturnix chinensis) elicited by diet-fibre or diet-energy dilution? Williamson SA; Jones SK; Munn AJ J Exp Biol; 2014 Jun; 217(Pt 11):1839-42. PubMed ID: 24577452 [TBL] [Abstract][Full Text] [Related]
2. No effect of short-term exposure to high-fibre diets on the gastrointestinal morphology of layer hens (Gallus gallus domesticus): body reserves are used to manage energy deficits in favour of phenotypic plasticity. Courtney Jones SK; Cowieson AJ; Williamson SA; Munn AJ J Anim Physiol Anim Nutr (Berl); 2013 Oct; 97(5):868-77. PubMed ID: 22882770 [TBL] [Abstract][Full Text] [Related]
3. Effects of dietary dilution with fibre on the food intake and gut dimensions of Japanese quail. Savory CJ; Gentle MJ Br Poult Sci; 1976 Nov; 17(6):561-70. PubMed ID: 1000323 [TBL] [Abstract][Full Text] [Related]
4. Changes in food intake and gut size in Japanese quail in response to manipulation of dietary fibre content. Savory CJ; Gentle MJ Br Poult Sci; 1976 Nov; 17(6):571-80. PubMed ID: 1000324 [TBL] [Abstract][Full Text] [Related]
5. Fibre-induced feed sorting in King Quail (Coturnix chinensis): behavioural plasticity elicited by a physiological challenge. Stewart M; Munn AJ J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Sep; 200(9):789-97. PubMed ID: 24938477 [TBL] [Abstract][Full Text] [Related]
6. Comparison of total tract digestibility, development of visceral organs and digestive tract of Mong cai and Yorkshire x Landrace piglets fed diets with different fibre sources. Len NT; Hong TT; Ogle B; Lindberg JE J Anim Physiol Anim Nutr (Berl); 2009 Apr; 93(2):181-91. PubMed ID: 19320931 [TBL] [Abstract][Full Text] [Related]
7. Body growth, intestinal morphology and microflora of quail on diets supplemented with micronised wheat fibre. Rezaei M; Karimi Torshizi MA; Wall H; Ivarsson E Br Poult Sci; 2018 Aug; 59(4):422-429. PubMed ID: 29620417 [TBL] [Abstract][Full Text] [Related]
8. Phenotypic plasticity in the common garden snail: big guts and heavier mucus glands compete in snails faced with the dual challenge of poor diet and coarse substrate. Munn AJ; Treloar M J Comp Physiol B; 2017 May; 187(4):545-561. PubMed ID: 28025707 [TBL] [Abstract][Full Text] [Related]
9. Phenotypic flexibility of structure and function of the digestive system of Japanese quail. Starck JM; Rahmaan GH J Exp Biol; 2003 Jun; 206(Pt 11):1887-97. PubMed ID: 12728010 [TBL] [Abstract][Full Text] [Related]
10. Effects of dietary fibre on digesta passage, nutrient digestibility, and gastrointestinal tract morphology in the granivorous Mongolian gerbil (Meriones unguiculatus). Pei YX; Wang DH; Hume ID Physiol Biochem Zool; 2001; 74(5):742-9. PubMed ID: 11517459 [TBL] [Abstract][Full Text] [Related]
11. Hindgut plasticity in wallabies fed hay either unchopped or ground and pelleted: fiber is not the only factor. Munn AJ; Clissold F; Tarszisz E; Kimpton K; Dickman CR; Hume ID Physiol Biochem Zool; 2009; 82(3):270-9. PubMed ID: 19331583 [TBL] [Abstract][Full Text] [Related]
12. Fat absorption and deposition in Japanese quail (Coturnix coturnix japonica) fed a high fat diet. Magubane MM; Lembede BW; Erlwanger KH; Chivandi E; Donaldson J J S Afr Vet Assoc; 2013 May; 84(1):E1-7. PubMed ID: 23718824 [TBL] [Abstract][Full Text] [Related]
13. Effects of rice husk diluted dietary switching on the phenotypic change of gastrointestinal tract in adult ganders. Lu J; Shi SR; Wang ZY; Yang HM; Zou JM Br Poult Sci; 2011 Jun; 52(3):345-51. PubMed ID: 21732880 [TBL] [Abstract][Full Text] [Related]
14. The digestion of fibre by pigs. 3. Effects of the amount and type of fibre on physical characteristics of segments of the gastrointestinal tract. Stanogias G; Pearce GR Br J Nutr; 1985 May; 53(3):537-48. PubMed ID: 2998447 [TBL] [Abstract][Full Text] [Related]
15. Modelling digestive constraints in non-ruminant and ruminant foregut-fermenting mammals. Munn AJ; Streich WJ; Hummel J; Clauss M Comp Biochem Physiol A Mol Integr Physiol; 2008 Sep; 151(1):78-84. PubMed ID: 18586113 [TBL] [Abstract][Full Text] [Related]
16. Performance and gastro-intestinal response of broiler chickens fed on cereal grain-based foods soaked in water. Yasar S; Forbes JM Br Poult Sci; 1999 Mar; 40(1):65-76. PubMed ID: 10405038 [TBL] [Abstract][Full Text] [Related]
17. Characterisation of particle dynamics and turnover in the gastrointestinal tract of Holstein cows fed forage diets differing in fibre and protein contents. Zebeli Q; Klevenhusen F; Drochner W Arch Anim Nutr; 2012 Oct; 66(5):372-84. PubMed ID: 22889132 [TBL] [Abstract][Full Text] [Related]
18. The influence of fibre content and physical texture of the diet on the performance of broilers in the tropics. Abdelsamie RE; Ranaweera KN; Nano WE Br Poult Sci; 1983 Jul; 24(3):383-90. PubMed ID: 6311363 [TBL] [Abstract][Full Text] [Related]
19. The effect of different high-fat diets on erythrocyte osmotic fragility, growth performance and serum lipid concentrations in male, Japanese quail (Coturnix coturnix japonica). Donaldson J; Pillay K; Madziva MT; Erlwanger KH J Anim Physiol Anim Nutr (Berl); 2015 Apr; 99(2):281-9. PubMed ID: 25244110 [TBL] [Abstract][Full Text] [Related]