BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24577453)

  • 1. Glycolysis plays an important role in energy transfer from the base to the distal end of the flagellum in mouse sperm.
    Takei GL; Miyashiro D; Mukai C; Okuno M
    J Exp Biol; 2014 Jun; 217(Pt 11):1876-86. PubMed ID: 24577453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement.
    Mukai C; Okuno M
    Biol Reprod; 2004 Aug; 71(2):540-7. PubMed ID: 15084484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenine nucleotide metabolism and a role for AMP in modulating flagellar waveforms in mouse sperm.
    Vadnais ML; Cao W; Aghajanian HK; Haig-Ladewig L; Lin AM; Al-Alao O; Gerton GL
    Biol Reprod; 2014 Jun; 90(6):128. PubMed ID: 24740601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycolysis and sperm motility: does a spoonful of sugar help the flagellum go round?
    Ford WC
    Hum Reprod Update; 2006; 12(3):269-74. PubMed ID: 16407453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use?
    du Plessis SS; Agarwal A; Mohanty G; van der Linde M
    Asian J Androl; 2015; 17(2):230-5. PubMed ID: 25475660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compartmentalization of a unique ADP/ATP carrier protein SFEC (Sperm Flagellar Energy Carrier, AAC4) with glycolytic enzymes in the fibrous sheath of the human sperm flagellar principal piece.
    Kim YH; Haidl G; Schaefer M; Egner U; Mandal A; Herr JC
    Dev Biol; 2007 Feb; 302(2):463-76. PubMed ID: 17137571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtubule sliding in reduced-amplitude bending waves of Ciona sperm flagella: bending waves attenuated by lithium.
    Brokaw CJ
    Cell Motil Cytoskeleton; 1994; 27(2):150-60. PubMed ID: 8162621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible intracellular ATP changes in intact rat spermatozoa and effects on flagellar sperm movement.
    Jeulin C; Soufir JC
    Cell Motil Cytoskeleton; 1992; 21(3):210-22. PubMed ID: 1581974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serum albumin and HCO3- regulate separate pools of ATP in human spermatozoa.
    Hereng TH; Elgstøen KB; Eide L; Rosendal KR; Skålhegg BS
    Hum Reprod; 2014 May; 29(5):918-30. PubMed ID: 24578478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the regulation of dynein activity during flagellar motility.
    Shingyoji C
    Methods Enzymol; 2013; 524():147-69. PubMed ID: 23498739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility.
    Ho HC; Suarez SS
    Biol Reprod; 2003 May; 68(5):1590-6. PubMed ID: 12606347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulatory mechanisms of sliding of nine outer doublet microtubules for generating planar and half-helical flagellar waves.
    Ishijima S
    Mol Hum Reprod; 2019 Jun; 25(6):320-328. PubMed ID: 30824931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy metabolism and sperm function.
    Miki K
    Soc Reprod Fertil Suppl; 2007; 65():309-25. PubMed ID: 17644971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenylate kinases 1 and 2 are part of the accessory structures in the mouse sperm flagellum.
    Cao W; Haig-Ladewig L; Gerton GL; Moss SB
    Biol Reprod; 2006 Oct; 75(4):492-500. PubMed ID: 16790685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic regulation in mammalian sperm: mitochondrial volume determines sperm length and flagellar beat frequency.
    Cardullo RA; Baltz JM
    Cell Motil Cytoskeleton; 1991; 19(3):180-8. PubMed ID: 1878988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial ATP is required for the maintenance of membrane integrity in stallion spermatozoa, whereas motility requires both glycolysis and oxidative phosphorylation.
    Davila MP; Muñoz PM; Bolaños JM; Stout TA; Gadella BM; Tapia JA; da Silva CB; Ferrusola CO; Peña FJ
    Reproduction; 2016 Dec; 152(6):683-694. PubMed ID: 27798283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localisation and function of glucose transporter GLUT1 in chicken (Gallus gallus domesticus) spermatozoa: relationship between ATP production pathways and flagellar motility.
    Setiawan R; Priyadarshana C; Tajima A; Travis AJ; Asano A
    Reprod Fertil Dev; 2020 Apr; 32(7):697-705. PubMed ID: 32317094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient disruptions of axonemal structure and microtubule sliding during bend propagation by Ciona sperm flagella.
    Brokaw CJ
    Cell Motil Cytoskeleton; 1997; 37(4):346-62. PubMed ID: 9258507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The calcium response of mouse sperm flagella: role of calcium ions in the regulation of dynein activity.
    Lesich KA; Kelsch CB; Ponichter KL; Dionne BJ; Dang L; Lindemann CB
    Biol Reprod; 2012 Apr; 86(4):105. PubMed ID: 22262695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the eel sperm flagellum. 3. Vibratile motility and rotatory bending.
    Woolley DM
    Cell Motil Cytoskeleton; 1998; 39(3):246-55. PubMed ID: 9519905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.