These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24577572)

  • 81. Microarray-based detection of dye-labeled DNA by SERRS using particles formed by enzymatic silver deposition.
    Hering KK; Möller R; Fritzsche W; Popp J
    Chemphyschem; 2008 Apr; 9(6):867-72. PubMed ID: 18386261
    [TBL] [Abstract][Full Text] [Related]  

  • 82. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering.
    Thacker VV; Herrmann LO; Sigle DO; Zhang T; Liedl T; Baumberg JJ; Keyser UF
    Nat Commun; 2014 Mar; 5():3448. PubMed ID: 24622339
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Fabrication of plasmon length-based surface enhanced Raman scattering for multiplex detection on microfluidic device.
    Nguyen AH; Lee J; Il Choi H; Seok Kwak H; Jun Sim S
    Biosens Bioelectron; 2015 Aug; 70():358-65. PubMed ID: 25841120
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles.
    Bu Y; Lee S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3923-31. PubMed ID: 22833686
    [TBL] [Abstract][Full Text] [Related]  

  • 85. ICP-MS-based multiplex and ultrasensitive assay of viruses with lanthanide-coded biospecific tagging and amplification strategies.
    Luo Y; Yan X; Huang Y; Wen R; Li Z; Yang L; Yang CJ; Wang Q
    Anal Chem; 2013 Oct; 85(20):9428-32. PubMed ID: 24069956
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Universal surface-enhanced Raman scattering amplification detector for ultrasensitive detection of multiple target analytes.
    Zheng J; Hu Y; Bai J; Ma C; Li J; Li Y; Shi M; Tan W; Yang R
    Anal Chem; 2014 Feb; 86(4):2205-12. PubMed ID: 24437937
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Molecularly imprinted plasmonic nanosensor for selective SERS detection of protein biomarkers.
    Lv Y; Qin Y; Svec F; Tan T
    Biosens Bioelectron; 2016 Jun; 80():433-441. PubMed ID: 26874111
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Plasmonic Nanoprobes for in Vivo Multimodal Sensing and Bioimaging of MicroRNA within Plants.
    Crawford BM; Strobbia P; Wang HN; Zentella R; Boyanov MI; Pei ZM; Sun TP; Kemner KM; Vo-Dinh T
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7743-7754. PubMed ID: 30694650
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Plasmonic nanoprobes for SERS biosensing and bioimaging.
    Vo-Dinh T; Wang HN; Scaffidi J
    J Biophotonics; 2010 Jan; 3(1-2):89-102. PubMed ID: 19517422
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Reproducible surface-enhanced Raman quantification of biomarkers in multicomponent mixtures.
    De Luca AC; Reader-Harris P; Mazilu M; Mariggiò S; Corda D; Di Falco A
    ACS Nano; 2014 Mar; 8(3):2575-83. PubMed ID: 24524333
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A nanoplasmonic label-free surface-enhanced Raman scattering strategy for non-invasive cancer genetic subtyping in patient samples.
    Wang J; Koo KM; Wee EJ; Wang Y; Trau M
    Nanoscale; 2017 Mar; 9(10):3496-3503. PubMed ID: 28240336
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors.
    Star A; Tu E; Niemann J; Gabriel JC; Joiner CS; Valcke C
    Proc Natl Acad Sci U S A; 2006 Jan; 103(4):921-6. PubMed ID: 16418278
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Multiplex single-cell quantification of rare RNA transcripts from protoplasts in a model plant system.
    Kadam US; Schulz B; Irudayaraj JMK
    Plant J; 2017 Jun; 90(6):1187-1195. PubMed ID: 28301688
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Inverse Molecular Sentinel-Integrated Fiberoptic Sensor for Direct and in Situ Detection of miRNA Targets.
    Strobbia P; Ran Y; Crawford BM; Cupil-Garcia V; Zentella R; Wang HN; Sun TP; Vo-Dinh T
    Anal Chem; 2019 May; 91(9):6345-6352. PubMed ID: 30916925
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Direct Detection of Unamplified Pathogen RNA in Blood Lysate using an Integrated Lab-in-a-Stick Device and Ultrabright SERS Nanorattles.
    Ngo HT; Freedman E; Odion RA; Strobbia P; De Silva Indrasekara AS; Vohra P; Taylor SM; Vo-Dinh T
    Sci Rep; 2018 Mar; 8(1):4075. PubMed ID: 29511216
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Direct Approach toward Label-Free DNA Detection by Surface-Enhanced Raman Spectroscopy: Discrimination of a Single-Base Mutation in 50 Base-Paired Double Helixes.
    Li Y; Gao T; Xu G; Xiang X; Zhao B; Han XX; Guo X
    Anal Chem; 2019 Jul; 91(13):7980-7984. PubMed ID: 31247714
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Surface-enhanced Raman gene probes.
    Vo-Dinh T; Houck K; Stokes DL
    Anal Chem; 1994 Oct; 66(20):3379-83. PubMed ID: 7978314
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Multiplexed Detection of MicroRNA Biomarkers Using SERS-Based Inverse Molecular Sentinel (iMS) Nanoprobes.
    Wang HN; Crawford BM; Fales AM; Bowie ML; Seewaldt VL; Vo-Dinh T
    J Phys Chem C Nanomater Interfaces; 2016 Sep; 120(37):21047-21050. PubMed ID: 29051793
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Spectroelectrochemical Nanosensor for the Determination of Cystatin C in Human Blood.
    Hassanain WA; Izake EL; Ayoko GA
    Anal Chem; 2018 Sep; 90(18):10843-10850. PubMed ID: 30160939
    [TBL] [Abstract][Full Text] [Related]  

  • 100. In-situ fingerprinting phosphorylated proteins via surface-enhanced Raman spectroscopy: Single-site discrimination of Tau biomarkers in Alzheimer's disease.
    Ma H; Liu S; Liu Y; Zhu J; Han XX; Ozaki Y; Zhao B
    Biosens Bioelectron; 2021 Jan; 171():112748. PubMed ID: 33113381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.