These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 24577897)

  • 1. Rapid RNA exchange in aqueous two-phase system and coacervate droplets.
    Jia TZ; Hentrich C; Szostak JW
    Orig Life Evol Biosph; 2014 Feb; 44(1):1-12. PubMed ID: 24577897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments.
    Smokers IBA; Visser BS; Slootbeek AD; Huck WTS; Spruijt E
    Acc Chem Res; 2024 Jul; 57(14):1885-1895. PubMed ID: 38968602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Did the exposure of coacervate droplets to rain make them the first stable protocells?
    Agrawal A; Radakovic A; Vonteddu A; Rizvi S; Huynh VN; Douglas JF; Tirrell MV; Karim A; Szostak JW
    Sci Adv; 2024 Aug; 10(34):eadn9657. PubMed ID: 39167649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty Acid-Based Coacervates as a Membrane-free Protocell Model.
    Zhou L; Koh JJ; Wu J; Fan X; Chen H; Hou X; Jiang L; Lu X; Li Z; He C
    Bioconjug Chem; 2022 Mar; 33(3):444-451. PubMed ID: 35138820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofunctional coacervate-based artificial protocells with membrane-like and cytoplasm-like structures for the treatment of persistent hyperuricemia.
    Hu Q; Lan H; Tian Y; Li X; Wang M; Zhang J; Yu Y; Chen W; Kong L; Guo Y; Zhang Z
    J Control Release; 2024 Jan; 365():176-192. PubMed ID: 37992873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipid Membrane Formation Templated by Coacervate Droplets.
    Pir Cakmak F; Marianelli AM; Keating CD
    Langmuir; 2021 Aug; 37(34):10366-10375. PubMed ID: 34398617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membranized Coacervate Microdroplets: from Versatile Protocell Models to Cytomimetic Materials.
    Gao N; Mann S
    Acc Chem Res; 2023 Feb; 56(3):297-307. PubMed ID: 36625520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell theory, intrinsically disordered proteins, and the physics of the origin of life.
    Matveev VV
    Prog Biophys Mol Biol; 2019 Dec; 149():114-130. PubMed ID: 30965040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocell Effects on RNA Folding, Function, and Evolution.
    Saha R; Choi JA; Chen IA
    Acc Chem Res; 2024 Aug; 57(15):2058-2066. PubMed ID: 39005057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous Transformation from Membrane-Less Coacervates to Membranized Coacervates and Giant Vesicles: Toward Multicompartmental Protocells with Complex (Membrane) Architectures.
    Zhou Y; Zhang K; Moreno S; Temme A; Voit B; Appelhans D
    Angew Chem Int Ed Engl; 2024 Aug; 63(34):e202407472. PubMed ID: 38847278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model.
    Dora Tang TY; Rohaida Che Hak C; Thompson AJ; Kuimova MK; Williams DS; Perriman AW; Mann S
    Nat Chem; 2014 Jun; 6(6):527-33. PubMed ID: 24848239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmatically Dynamic Microcompartmentation in Coacervate-in-Pickering Emulsion Protocell.
    Chen M; Liu G; Zhang M; Li Y; Hong X; Yang H
    Small; 2023 Mar; 19(10):e2206437. PubMed ID: 36564366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide-Based Coacervate-Core Vesicles with Semipermeable Membranes.
    Abbas M; Law JO; Grellscheid SN; Huck WTS; Spruijt E
    Adv Mater; 2022 Aug; 34(34):e2202913. PubMed ID: 35796384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active coacervate droplets as a model for membraneless organelles and protocells.
    Donau C; Späth F; Sosson M; Kriebisch BAK; Schnitter F; Tena-Solsona M; Kang HS; Salibi E; Sattler M; Mutschler H; Boekhoven J
    Nat Commun; 2020 Oct; 11(1):5167. PubMed ID: 33056997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid Protocells Based on Coacervate-Templated Fatty Acid Vesicles Combine Improved Membrane Stability with Functional Interior Protocytoplasm.
    Lee J; Pir Cakmak F; Booth R; Keating CD
    Small; 2024 Oct; ():e2406671. PubMed ID: 39402790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous Membranization in a Silk-Based Coacervate Protocell Model.
    Yin Z; Tian L; Patil AJ; Li M; Mann S
    Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202202302. PubMed ID: 35176203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous Two-Phase System (ATPS)-Based Polymersomes for Particle Isolation and Separation.
    Seo H; Nam C; Kim E; Son J; Lee H
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55467-55475. PubMed ID: 33237722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triggerable Protocell Capture in Nanoparticle-Caged Coacervate Microdroplets.
    Gao N; Xu C; Yin Z; Li M; Mann S
    J Am Chem Soc; 2022 Mar; 144(9):3855-3862. PubMed ID: 35192333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origins of cellular life.
    Schrum JP; Zhu TF; Szostak JW
    Cold Spring Harb Perspect Biol; 2010 Sep; 2(9):a002212. PubMed ID: 20484387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Formation of Membrane-Free Aqueous Coacervate Droplets in Water.
    van Swaay D; Tang TY; Mann S; de Mello A
    Angew Chem Int Ed Engl; 2015 Jul; 54(29):8398-401. PubMed ID: 26012895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.