These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 24578287)

  • 1. High-throughput biosensor discriminates between different algal H2 -photoproducing strains.
    Wecker MS; Ghirardi ML
    Biotechnol Bioeng; 2014 Jul; 111(7):1332-40. PubMed ID: 24578287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Rhodobacter capsulatus self-reporting model system for optimizing light-dependent, [FeFe]-hydrogenase-driven H
    Wecker MS; Beaton SE; Chado RA; Ghirardi ML
    Biotechnol Bioeng; 2017 Feb; 114(2):291-297. PubMed ID: 27531314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).
    Melis A
    Planta; 2007 Oct; 226(5):1075-86. PubMed ID: 17721788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions.
    Kosourov SN; Seibert M
    Biotechnol Bioeng; 2009 Jan; 102(1):50-8. PubMed ID: 18823051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light Intensity is Important for Hydrogen Production in NaHSO3-Treated Chlamydomonas reinhardtii.
    Wei L; Yi J; Wang L; Huang T; Gao F; Wang Q; Ma W
    Plant Cell Physiol; 2017 Mar; 58(3):451-457. PubMed ID: 28064249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp.
    Batyrova K; Gavrisheva A; Ivanova E; Liu J; Tsygankov A
    Int J Mol Sci; 2015 Jan; 16(2):2705-16. PubMed ID: 25629229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production.
    Antal TK; Krendeleva TE; Rubin AB
    Appl Microbiol Biotechnol; 2011 Jan; 89(1):3-15. PubMed ID: 20878321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen fuel production by transgenic microalgae.
    Melis A; Seibert M; Ghirardi ML
    Adv Exp Med Biol; 2007; 616():110-21. PubMed ID: 18161495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process and reactor design for biophotolytic hydrogen production.
    Tamburic B; Dechatiwongse P; Zemichael FW; Maitland GC; Hellgardt K
    Phys Chem Chem Phys; 2013 Jul; 15(26):10783-94. PubMed ID: 23689756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii.
    Torzillo G; Scoma A; Faraloni C; Giannelli L
    Crit Rev Biotechnol; 2015; 35(4):485-96. PubMed ID: 24754449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving hydrogen production of Chlamydomonas reinhardtii by reducing chlorophyll content via atmospheric and room temperature plasma.
    Ban S; Lin W; Luo Z; Luo J
    Bioresour Technol; 2019 Mar; 275():425-429. PubMed ID: 30594343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic biology for improved hydrogen production in Chlamydomonas reinhardtii.
    King SJ; Jerkovic A; Brown LJ; Petroll K; Willows RD
    Microb Biotechnol; 2022 Jul; 15(7):1946-1965. PubMed ID: 35338590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-cultivation of Chlamydomonas reinhardtii with Azotobacter chroococcum improved H
    Xu L; Cheng X; Wu S; Wang Q
    Biotechnol Lett; 2017 May; 39(5):731-738. PubMed ID: 28432498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen production by photosynthetic green algae.
    Ghirardi ML
    Indian J Biochem Biophys; 2006 Aug; 43(4):201-10. PubMed ID: 17133763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell.
    Rosenbaum M; Schröder U; Scholz F
    Appl Microbiol Biotechnol; 2005 Oct; 68(6):753-6. PubMed ID: 15696280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment with NaHSO3 greatly enhances photobiological H2 production in the green alga Chlamydomonas reinhardtii.
    Ma W; Chen M; Wang L; Wei L; Wang Q
    Bioresour Technol; 2011 Sep; 102(18):8635-8. PubMed ID: 21489780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production.
    Pinto TS; Malcata FX; Arrabaça JD; Silva JM; Spreitzer RJ; Esquível MG
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5635-43. PubMed ID: 23649352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous hydrogen photoproduction by Chlamydomonas reinhardtii: using a novel two-stage, sulfate-limited chemostat system.
    Fedorov AS; Kosourov S; Ghirardi ML; Seibert M
    Appl Biochem Biotechnol; 2005; 121-124():403-12. PubMed ID: 15917617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii: Part I. Model development and parameter identification.
    Fouchard S; Pruvost J; Degrenne B; Titica M; Legrand J
    Biotechnol Bioeng; 2009 Jan; 102(1):232-45. PubMed ID: 18688816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Algae-Bacteria Consortia as a Strategy to Enhance H
    Fakhimi N; Gonzalez-Ballester D; Fernández E; Galván A; Dubini A
    Cells; 2020 May; 9(6):. PubMed ID: 32486026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.