These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 24578582)
21. Numerical analysis of the impact of cytoskeletal actin filament density alterations onto the diffusive vesicle-mediated cell transport. Haspinger DC; Klinge S; Holzapfel GA PLoS Comput Biol; 2021 May; 17(5):e1008784. PubMed ID: 33939706 [TBL] [Abstract][Full Text] [Related]
22. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method. Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781 [TBL] [Abstract][Full Text] [Related]
23. A multiscale microstructure model of carbon black distribution in rubber. Jean A; Jeulin D; Forest S; Cantournet S; N'guyen F J Microsc; 2011 Mar; 241(3):243-60. PubMed ID: 21118222 [TBL] [Abstract][Full Text] [Related]
24. Multiphysics and Multiscale Modeling of Coupled Transport of Chloride Ions in Concrete. Jain A; Gencturk B Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33668413 [TBL] [Abstract][Full Text] [Related]
25. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method. Barkaoui A; Chamekh A; Merzouki T; Hambli R; Mkaddem A Int J Numer Method Biomed Eng; 2014 Mar; 30(3):318-38. PubMed ID: 24123969 [TBL] [Abstract][Full Text] [Related]
26. A multiscale analysis of nutrient transport and biological tissue growth in vitro. O'Dea RD; Nelson MR; El Haj AJ; Waters SL; Byrne HM Math Med Biol; 2015 Sep; 32(3):345-66. PubMed ID: 25323738 [TBL] [Abstract][Full Text] [Related]
27. Assessment of the multifactorial causes of atypical femoral fractures using a novel multiscale finite element approach. Demirtas A; Rajapakse CS; Ural A Bone; 2020 Jun; 135():115318. PubMed ID: 32173503 [TBL] [Abstract][Full Text] [Related]
28. Status and Challenges in Homogenization Methods for Lattice Materials. Somnic J; Jo BW Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057322 [TBL] [Abstract][Full Text] [Related]
29. On multiscale boundary conditions in the computational homogenization of an RVE of tendon fascicles. Carniel TA; Klahr B; Fancello EA J Mech Behav Biomed Mater; 2019 Mar; 91():131-138. PubMed ID: 30579110 [TBL] [Abstract][Full Text] [Related]
30. Microstructural Modeling of Rheological Mechanical Response for Asphalt Mixture Using an Image-Based Finite Element Approach. Huang W; Wang H; Yin Y; Zhang X; Yuan J Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31247900 [TBL] [Abstract][Full Text] [Related]
31. Sorption-Deformation-Percolation Model for Diffusion in Nanoporous Media. Zhang C; Shomali A; Coasne B; Derome D; Carmeliet J ACS Nano; 2023 Mar; 17(5):4507-4514. PubMed ID: 36846983 [TBL] [Abstract][Full Text] [Related]
32. Toward Multiscale Modeling of Proteins and Bioagglomerates: An Orientation-Sensitive Diffusion Model for the Integration of Molecular Dynamics and the Discrete Element Method. Depta PN; Jandt U; Dosta M; Zeng AP; Heinrich S J Chem Inf Model; 2019 Jan; 59(1):386-398. PubMed ID: 30550276 [TBL] [Abstract][Full Text] [Related]
34. Multiscale modeling of protein transport in silicon membrane nanochannels. Part 2. From molecular parameters to a predictive continuum diffusion model. Amato F; Cosentino C; Pricl S; Ferrone M; Fermeglia M; Cheng MM; Walczak R; Ferrari M Biomed Microdevices; 2006 Dec; 8(4):291-8. PubMed ID: 17003963 [TBL] [Abstract][Full Text] [Related]
35. Anisotropic constitutive model incorporating multiple damage mechanisms for multiscale simulation of dental enamel. Ma S; Scheider I; Bargmann S J Mech Behav Biomed Mater; 2016 Sep; 62():515-533. PubMed ID: 27294283 [TBL] [Abstract][Full Text] [Related]
36. X-ray physics-based CT-to-composition conversion applied to a tissue engineering scaffold, enabling multiscale simulation of its elastic behavior. Szlazak K; Vass V; Hasslinger P; Jaroszewicz J; Dejaco A; Idaszek J; Scheiner S; Hellmich C; Swieszkowski W Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():389-396. PubMed ID: 30573263 [TBL] [Abstract][Full Text] [Related]
37. Using Non-linear Homogenization to Improve the Performance of Macroscopic Damage Models of Trabecular Bone. Levrero-Florencio F; Pankaj P Front Physiol; 2018; 9():545. PubMed ID: 29867581 [TBL] [Abstract][Full Text] [Related]
38. From molecular systems to continuum solids: A multiscale structure and dynamics. Tong Q; Li S J Chem Phys; 2015 Aug; 143(6):064101. PubMed ID: 26277121 [TBL] [Abstract][Full Text] [Related]
39. Multiscale FE method for analysis of bone micro-structures. Podshivalov L; Fischer A; Bar-Yoseph PZ J Mech Behav Biomed Mater; 2011 Aug; 4(6):888-99. PubMed ID: 21616470 [TBL] [Abstract][Full Text] [Related]
40. Morphology-transport relationships in liquid chromatography: Application to method development in size exclusion chromatography. Gritti F; Hochstrasser J; Svidrytski A; Hlushkou D; Tallarek U J Chromatogr A; 2020 Jun; 1620():460991. PubMed ID: 32115234 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]