These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24578585)

  • 1. Decolourisation of Different Dyes by two
    Zabłocka-Godlewska E; Przystaś W; Grabińska-Sota E
    Water Air Soil Pollut; 2014; 225(2):1846. PubMed ID: 24578585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dye Decolourisation Using Two
    Zabłocka-Godlewska E; Przystaś W; Grabińska-Sota E
    Water Air Soil Pollut; 2015; 226(1):2249. PubMed ID: 25530640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decolourization of Diazo Evans Blue by Two Strains of Pseudomonas fluorescens Isolated from Different Wastewater Treatment Plants.
    Zabłocka-Godlewska E; Przystaś W; Grabińska-Sota E
    Water Air Soil Pollut; 2012 Sep; 223(8):5259-5266. PubMed ID: 23002313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological Removal of Azo and Triphenylmethane Dyes and Toxicity of Process By-Products.
    Przystaś W; Zabłocka-Godlewska E; Grabińska-Sota E
    Water Air Soil Pollut; 2012 May; 223(4):1581-1592. PubMed ID: 22593606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficacy of fungal decolorization of a mixture of dyes belonging to different classes.
    Przystas W; Zablocka-Godlewska E; Grabinska-Sota E
    Braz J Microbiol; 2015 Jun; 46(2):415-24. PubMed ID: 26273256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports.
    Przystaś W; Zabłocka-Godlewska E; Grabińska-Sota E
    Braz J Microbiol; 2018; 49(2):285-295. PubMed ID: 29129408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of Dyes Removal by Mixed Fungal Cultures and Toxicity of Their Metabolites.
    Przystaś W; Zabłocka-Godlewska E; Grabińska-Sota E
    Water Air Soil Pollut; 2013 May; 224(5):1534. PubMed ID: 23687394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possibilities of Obtaining from Highly Polluted Environments: New Bacterial Strains with a Significant Decolorization Potential of Different Synthetic Dyes.
    Zabłocka-Godlewska E; Przystaś W; Grabińska-Sota E
    Water Air Soil Pollut; 2018; 229(6):176. PubMed ID: 29861514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation.
    Oon YS; Ong SA; Ho LN; Wong YS; Oon YL; Lehl HK; Thung WE; Nordin N
    J Hazard Mater; 2017 Mar; 325():170-177. PubMed ID: 27931001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycoremediation of congo red dye by filamentous fungi.
    Bhattacharya S; Das A; G M; K V; J S
    Braz J Microbiol; 2011 Oct; 42(4):1526-36. PubMed ID: 24031787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: a review.
    Mishra S; Maiti A
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8286-8314. PubMed ID: 29383646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of Pseudomonas otitidis WL-13 and its capacity to decolorize triphenylmethane dyes.
    Wu J; Jung BG; Kim KS; Lee YC; Sung NC
    J Environ Sci (China); 2009; 21(7):960-4. PubMed ID: 19862963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decolourisation of reactive textile dyes Drimarene Blue X3LR and Remazol Brilliant Blue R by Funalia trogii ATCC 200800.
    Ozsoy HD; Unyayar A; Mazmanci MA
    Biodegradation; 2005 Jun; 16(3):195-204. PubMed ID: 15865144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decolourisation Capabilities of Ligninolytic Enzymes Produced by
    Sing NN; Husaini A; Zulkharnain A; Roslan HA
    Biomed Res Int; 2017; 2017():1325754. PubMed ID: 28168194
    [No Abstract]   [Full Text] [Related]  

  • 15. Monoazo and diazo dye decolourisation studies in a methanogenic UASB reactor.
    Brás R; Gomes A; Ferra MI; Pinheiro HM; Gonçalves IC
    J Biotechnol; 2005 Jan; 115(1):57-66. PubMed ID: 15607225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogenic sulphide plays a major role on the riboflavin-mediated decolourisation of azo dyes under sulphate-reducing conditions.
    Cervantes FJ; Enríquez JE; Galindo-Petatán E; Arvayo H; Razo-Flores E; Field JA
    Chemosphere; 2007 Jun; 68(6):1082-9. PubMed ID: 17350080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of Bacillus thuringiensis for acid red 119 dye decolourisation.
    Dave SR; Dave RH
    Bioresour Technol; 2009 Jan; 100(1):249-53. PubMed ID: 18590958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decolourisation of textile dye by laccase: Process evaluation and assessment of its degradation bioproducts.
    Yadav A; Yadav P; Kumar Singh A; Kumar V; Chintaman Sonawane V; Markandeya ; Naresh Bharagava R; Raj A
    Bioresour Technol; 2021 Nov; 340():125591. PubMed ID: 34325390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of azoreductase and assessment of toxicity of metabolic products from azo dyes by Pseudomonas luteola.
    Hu TL
    Water Sci Technol; 2001; 43(2):261-9. PubMed ID: 11380189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical decolourisation of structurally different dyes.
    Sanromán MA; Pazos M; Ricart MT; Cameselle C
    Chemosphere; 2004 Oct; 57(3):233-9. PubMed ID: 15312740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.