These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 24579079)
1. Microtexturing of the conductive PEDOT:PSS polymer for superhydrophobic organic electrochemical transistors. Gentile F; Coppedè N; Tarabella G; Villani M; Calestani D; Candeloro P; Iannotta S; Di Fabrizio E Biomed Res Int; 2014; 2014():302694. PubMed ID: 24579079 [TBL] [Abstract][Full Text] [Related]
2. Electrochemistry of conductive polymers. 45. Nanoscale conductivity of PEDOT and PEDOT:PSS composite films studied by current-sensing AFM. Lee HJ; Lee J; Park SM J Phys Chem B; 2010 Mar; 114(8):2660-6. PubMed ID: 20141126 [TBL] [Abstract][Full Text] [Related]
3. Liposome sensing and monitoring by organic electrochemical transistors integrated in microfluidics. Tarabella G; Balducci AG; Coppedè N; Marasso S; D'Angelo P; Barbieri S; Cocuzza M; Colombo P; Sonvico F; Mosca R; Iannotta S Biochim Biophys Acta; 2013 Sep; 1830(9):4374-80. PubMed ID: 23295972 [TBL] [Abstract][Full Text] [Related]
4. Conducting polymer transistors making use of activated carbon gate electrodes. Tang H; Kumar P; Zhang S; Yi Z; Crescenzo GD; Santato C; Soavi F; Cicoira F ACS Appl Mater Interfaces; 2015 Jan; 7(1):969-73. PubMed ID: 25510960 [TBL] [Abstract][Full Text] [Related]
6. PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics. Zajdel TJ; Baruch M; Méhes G; Stavrinidou E; Berggren M; Maharbiz MM; Simon DT; Ajo-Franklin CM Sci Rep; 2018 Oct; 8(1):15293. PubMed ID: 30327574 [TBL] [Abstract][Full Text] [Related]
7. Highly Conductive PPy-PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application. Ren X; Yang M; Yang T; Xu C; Ye Y; Wu X; Zheng X; Wang B; Wan Y; Luo Z ACS Appl Mater Interfaces; 2021 Jun; 13(21):25374-25382. PubMed ID: 34009925 [TBL] [Abstract][Full Text] [Related]
8. PEDOT:PSS interfaces stabilised using a PEGylated crosslinker yield improved conductivity and biocompatibility. Solazzo M; Krukiewicz K; Zhussupbekova A; Fleischer K; Biggs MJ; Monaghan MG J Mater Chem B; 2019 Aug; 7(31):4811-4820. PubMed ID: 31389966 [TBL] [Abstract][Full Text] [Related]
9. Conductivity trends of PEDOT-PSS impregnated fabric and the effect of conductivity on electrochromic textile. Ding Y; Invernale MA; Sotzing GA ACS Appl Mater Interfaces; 2010 Jun; 2(6):1588-93. PubMed ID: 20481442 [TBL] [Abstract][Full Text] [Related]
10. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Pires F; Ferreira Q; Rodrigues CA; Morgado J; Ferreira FC Biochim Biophys Acta; 2015 Jun; 1850(6):1158-68. PubMed ID: 25662071 [TBL] [Abstract][Full Text] [Related]
11. An Inkjet-Printed PEDOT:PSS-Based Stretchable Conductor for Wearable Health Monitoring Device Applications. Lo LW; Zhao J; Wan H; Wang Y; Chakrabartty S; Wang C ACS Appl Mater Interfaces; 2021 May; 13(18):21693-21702. PubMed ID: 33926183 [TBL] [Abstract][Full Text] [Related]
12. Nano-gold assisted highly conducting and biocompatible bacterial cellulose-PEDOT:PSS films for biology-device interface applications. Khan S; Ul-Islam M; Ullah MW; Israr M; Jang JH; Park JK Int J Biol Macromol; 2018 Feb; 107(Pt A):865-873. PubMed ID: 28935538 [TBL] [Abstract][Full Text] [Related]
13. Conductive polymer combined silk fiber bundle for bioelectrical signal recording. Tsukada S; Nakashima H; Torimitsu K PLoS One; 2012; 7(4):e33689. PubMed ID: 22493670 [TBL] [Abstract][Full Text] [Related]
14. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Xia Y; Sun K; Ouyang J Adv Mater; 2012 May; 24(18):2436-40. PubMed ID: 22488584 [TBL] [Abstract][Full Text] [Related]
15. Enhancing the conductivity of PEDOT:PSS films for biomedical applications via hydrothermal treatment. Jeong W; Gwon G; Ha JH; Kim D; Eom KJ; Park JH; Kang SJ; Kwak B; Hong JI; Lee S; Hyun DC; Lee S Biosens Bioelectron; 2021 Jan; 171():112717. PubMed ID: 33059169 [TBL] [Abstract][Full Text] [Related]
16. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733 [TBL] [Abstract][Full Text] [Related]
17. Combined optical and electronic sensing of epithelial cells using planar organic transistors. Ramuz M; Hama A; Huerta M; Rivnay J; Leleux P; Owens RM Adv Mater; 2014 Nov; 26(41):7083-90. PubMed ID: 25179835 [TBL] [Abstract][Full Text] [Related]
19. Highly flexible and conductive poly (3, 4-ethylene dioxythiophene)-poly (styrene sulfonate) anchored 3-dimensional porous graphene network-based electrochemical biosensor for glucose and pH detection in human perspiration. Zahed MA; Barman SC; Das PS; Sharifuzzaman M; Yoon HS; Yoon SH; Park JY Biosens Bioelectron; 2020 Jul; 160():112220. PubMed ID: 32339151 [TBL] [Abstract][Full Text] [Related]
20. Significant vertical phase separation in solvent-vapor-annealed poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) composite films leading to better conductivity and work function for high-performance indium tin oxide-free optoelectronics. Yeo JS; Yun JM; Kim DY; Park S; Kim SS; Yoon MH; Kim TW; Na SI ACS Appl Mater Interfaces; 2012 May; 4(5):2551-60. PubMed ID: 22489686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]