These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
433 related articles for article (PubMed ID: 24579167)
1. Mitosis detection in breast cancer histology images with deep neural networks. Cireşan DC; Giusti A; Gambardella LM; Schmidhuber J Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):411-8. PubMed ID: 24579167 [TBL] [Abstract][Full Text] [Related]
2. Cell words: modelling the visual appearance of cells in histopathology images. Sirinukunwattana K; Khan AM; Rajpoot NM Comput Med Imaging Graph; 2015 Jun; 42():16-24. PubMed ID: 25498246 [TBL] [Abstract][Full Text] [Related]
3. Towards semantic-driven high-content image analysis: an operational instantiation for mitosis detection in digital histopathology. Racoceanu D; Capron F Comput Med Imaging Graph; 2015 Jun; 42():2-15. PubMed ID: 25442055 [TBL] [Abstract][Full Text] [Related]
4. [Self-organizing neural networks for automatic detection and classification of contrast (media) enhancement of lesions in dynamic MR-mammography]. Vomweg TW; Teifke A; Kauczor HU; Achenbach T; Rieker O; Schreiber WG; Heitmann KR; Beier T; Thelen M Rofo; 2005 May; 177(5):703-13. PubMed ID: 15871086 [TBL] [Abstract][Full Text] [Related]
5. Cancer cells detection and pathology quantification utilizing image analysis techniques. Goudas T; Maglogiannis I Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4418-21. PubMed ID: 23366907 [TBL] [Abstract][Full Text] [Related]
6. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Prasoon A; Petersen K; Igel C; Lauze F; Dam E; Nielsen M Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):246-53. PubMed ID: 24579147 [TBL] [Abstract][Full Text] [Related]
7. Segmentation of cell clumps for quantitative analysis. Li S; Buehnemann C; Hassan B; Noble J Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4813-6. PubMed ID: 21097296 [TBL] [Abstract][Full Text] [Related]
8. Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features. Joo S; Yang YS; Moon WK; Kim HC IEEE Trans Med Imaging; 2004 Oct; 23(10):1292-300. PubMed ID: 15493696 [TBL] [Abstract][Full Text] [Related]
9. Automated analysis of the mitotic phases of human cells in 3D fluorescence microscopy image sequences. Harder N; Mora-Bermúdez F; Godinez WJ; Ellenberg J; Eils R; Rohr K Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):840-8. PubMed ID: 17354969 [TBL] [Abstract][Full Text] [Related]
10. Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection. Wahab N; Khan A; Lee YS Comput Biol Med; 2017 Jun; 85():86-97. PubMed ID: 28477446 [TBL] [Abstract][Full Text] [Related]
11. Heterogeneity assessment of histological tissue sections in whole slide images. Belhomme P; Toralba S; Plancoulaine B; Oger M; Gurcan MN; Bor-Angelier C Comput Med Imaging Graph; 2015 Jun; 42():51-5. PubMed ID: 25475487 [TBL] [Abstract][Full Text] [Related]
12. Segmentation of cell nuclei in heterogeneous microscopy images: a reshapable templates approach. Alilou M; Kovalev V; Taimouri V Comput Med Imaging Graph; 2013; 37(7-8):488-99. PubMed ID: 24008033 [TBL] [Abstract][Full Text] [Related]
13. Automatic detection and classification of leukocytes using convolutional neural networks. Zhao J; Zhang M; Zhou Z; Chu J; Cao F Med Biol Eng Comput; 2017 Aug; 55(8):1287-1301. PubMed ID: 27822698 [TBL] [Abstract][Full Text] [Related]
14. A semi-Markov model for mitosis segmentation in time-lapse phase contrast microscopy image sequences of stem cell populations. Liu AA; Li K; Kanade T IEEE Trans Med Imaging; 2012 Feb; 31(2):359-69. PubMed ID: 21954199 [TBL] [Abstract][Full Text] [Related]
15. Practical quantification of necrosis in histological whole-slide images. Homeyer A; Schenk A; Arlt J; Dahmen U; Dirsch O; Hahn HK Comput Med Imaging Graph; 2013 Jun; 37(4):313-22. PubMed ID: 23796718 [TBL] [Abstract][Full Text] [Related]
16. Medical breast ultrasound image segmentation by machine learning. Xu Y; Wang Y; Yuan J; Cheng Q; Wang X; Carson PL Ultrasonics; 2019 Jan; 91():1-9. PubMed ID: 30029074 [TBL] [Abstract][Full Text] [Related]
17. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI. Yang X; Liu C; Wang Z; Yang J; Min HL; Wang L; Cheng KT Med Image Anal; 2017 Dec; 42():212-227. PubMed ID: 28850876 [TBL] [Abstract][Full Text] [Related]
18. Images as occlusions of textures: a framework for segmentation. McCann MT; Mixon DG; Fickus MC; Castro CA; Ozolek JA; Kovacevic J IEEE Trans Image Process; 2014 May; 23(5):2033-46. PubMed ID: 24710403 [TBL] [Abstract][Full Text] [Related]
19. Empowering multiple instance histopathology cancer diagnosis by cell graphs. Kandemir M; Zhang C; Hamprecht FA Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):228-35. PubMed ID: 25485383 [TBL] [Abstract][Full Text] [Related]
20. Segmentation of histology slides of cortical bone using pulse coupled neural networks optimized by particle-swarm optimization. Hage IS; Hamade RF Comput Med Imaging Graph; 2013; 37(7-8):466-74. PubMed ID: 24050885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]