These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 24579167)

  • 21. Computer-assisted interpretation of planar whole-body bone scans.
    Sadik M; Hamadeh I; Nordblom P; Suurkula M; Höglund P; Ohlsson M; Edenbrandt L
    J Nucl Med; 2008 Dec; 49(12):1958-65. PubMed ID: 18997038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new detection algorithm (NDA) based on fuzzy cellular neural networks for white blood cell detection.
    Shitong W; Min W
    IEEE Trans Inf Technol Biomed; 2006 Jan; 10(1):5-10. PubMed ID: 16445244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A statistical approach to set classification by feature selection with applications to classification of histopathology images.
    Jung S; Qiao X
    Biometrics; 2014 Sep; 70(3):536-45. PubMed ID: 24588775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A two-layer structure prediction framework for microscopy cell detection.
    Xu Y; Wu W; Chang EI; Chen D; Mu J; Lee PP; Blenman KR; Tu Z
    Comput Med Imaging Graph; 2015 Apr; 41():29-36. PubMed ID: 25082065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integration of Gibbs Markov random field and Hopfield-type neural networks for unsupervised change detection in remotely sensed multitemporal images.
    Ghosh A; Subudhi BN; Bruzzone L
    IEEE Trans Image Process; 2013 Aug; 22(8):3087-96. PubMed ID: 23715521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simple and robust classification tree for differentiation between benign and malignant lesions in MR-mammography.
    Baltzer PA; Dietzel M; Gröschel T; Kaiser WA
    Eur J Radiol; 2012 Sep; 81 Suppl 1():S4-5. PubMed ID: 23083596
    [No Abstract]   [Full Text] [Related]  

  • 27. Toward automatic phenotyping of developing embryos from videos.
    Ning F; Delhomme D; LeCun Y; Piano F; Bottou L; Barbano PE
    IEEE Trans Image Process; 2005 Sep; 14(9):1360-71. PubMed ID: 16190471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Completely automated segmentation approach for breast ultrasound images using multiple-domain features.
    Shan J; Cheng HD; Wang Y
    Ultrasound Med Biol; 2012 Feb; 38(2):262-75. PubMed ID: 22230134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonrigid registration of 3-d multichannel microscopy images of cell nuclei.
    Yang S; Kohler D; Teller K; Cremer T; Le Baccon P; Heard E; Eils R; Rohr K
    IEEE Trans Image Process; 2008 Apr; 17(4):493-9. PubMed ID: 18390358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A boosting cascade for automated detection of prostate cancer from digitized histology.
    Doyle S; Madabhushi A; Feldman M; Tomaszeweski J
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):504-11. PubMed ID: 17354810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neuron branch detection and description using random walk.
    Kim HC; Genovesio A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1020-3. PubMed ID: 19964495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coupled minimum-cost flow cell tracking.
    Padfield D; Rittscher J; Roysam B
    Inf Process Med Imaging; 2009; 21():374-85. PubMed ID: 19694278
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated mitosis detection of stem cell populations in phase-contrast microscopy images.
    Huh S; Ker DF; Bise R; Chen M; Kanade T
    IEEE Trans Med Imaging; 2011 Mar; 30(3):586-96. PubMed ID: 21356609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated training data generation for microscopy focus classification.
    Gao D; Padfield D; Rittscher J; McKay R
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):446-53. PubMed ID: 20879346
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection.
    Cruz-Roa AA; Arevalo Ovalle JE; Madabhushi A; González Osorio FA
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):403-10. PubMed ID: 24579166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nucleolus detection in the Fuhrman grading system for application in CCRC.
    Kruk M; Osowski S; Markiewicz T; Kozlowski W; Koktysz R; Slodkowska J; Swiderski B
    Biomed Tech (Berl); 2014 Feb; 59(1):79-86. PubMed ID: 23945111
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT?
    Suzuki K; Doi K
    Acad Radiol; 2005 Oct; 12(10):1333-41. PubMed ID: 16179210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Breast cancer mitotic cell detection using cascade convolutional neural network with U-Net.
    Lu X; You Z; Sun M; Wu J; Zhang Z
    Math Biosci Eng; 2020 Dec; 18(1):673-695. PubMed ID: 33525113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Separation of benign and malignant glands in prostatic adenocarcinoma.
    Rashid S; Fazli L; Boag A; Siemens R; Abolmaesumi P; Salcudean SE
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):461-8. PubMed ID: 24505794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. To what extent can artificial neural network support nuclear medicine?
    Palumbo B; Fravolini ML
    Hell J Nucl Med; 2012; 15(3):180-3. PubMed ID: 23106047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.