These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 24579572)

  • 1. Fermi condensation near van Hove singularities within the Hubbard model on the triangular lattice.
    Yudin D; Hirschmeier D; Hafermann H; Eriksson O; Lichtenstein AI; Katsnelson MI
    Phys Rev Lett; 2014 Feb; 112(7):070403. PubMed ID: 24579572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bilayer Kagome Borophene with Multiple van Hove Singularities.
    Gao Q; Yan Q; Hu Z; Chen L
    Adv Sci (Weinh); 2024 Oct; 11(37):e2305059. PubMed ID: 37840410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Kondo-lattice state and non-Fermi-liquid behavior in the presence of Van Hove singularities.
    Irkhin VY
    J Phys Condens Matter; 2011 Feb; 23(6):065602. PubMed ID: 21406931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of the Chern Supermetal and Pair-Density Wave through Higher-Order Van Hove Singularities in the Haldane-Hubbard Model.
    Castro P; Shaffer D; Wu YM; Santos LH
    Phys Rev Lett; 2023 Jul; 131(2):026601. PubMed ID: 37505946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust topological superconductivity in spin-orbit coupled systems at higher-order van Hove filling.
    Han X; Zhan J; Zhang FC; Hu J; Wu X
    Sci Bull (Beijing); 2024 Feb; 69(3):319-324. PubMed ID: 38105164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms.
    Hart RA; Duarte PM; Yang TL; Liu X; Paiva T; Khatami E; Scalettar RT; Trivedi N; Huse DA; Hulet RG
    Nature; 2015 Mar; 519(7542):211-4. PubMed ID: 25707803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasiparticle anisotropy and pseudogap formation from the weak-coupling renormalization group point of view.
    Katanin AA; Kampf AP
    Phys Rev Lett; 2004 Sep; 93(10):106406. PubMed ID: 15447431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermi surface and van Hove singularities in the itinerant Metamagnet Sr3Ru2O7.
    Tamai A; Allan MP; Mercure JF; Meevasana W; Dunkel R; Lu DH; Perry RS; Mackenzie AP; Singh DJ; Shen ZX; Baumberger F
    Phys Rev Lett; 2008 Jul; 101(2):026407. PubMed ID: 18764208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultracold fermions and the SU(N) Hubbard model.
    Honerkamp C; Hofstetter W
    Phys Rev Lett; 2004 Apr; 92(17):170403. PubMed ID: 15169134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robustness of the Van Hove scenario for high-T(c) superconductors.
    Irkhin VY; Katanin AA; Katsnelson MI
    Phys Rev Lett; 2002 Aug; 89(7):076401. PubMed ID: 12190536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model.
    Cheuk LW; Nichols MA; Lawrence KR; Okan M; Zhang H; Khatami E; Trivedi N; Paiva T; Rigol M; Zwierlein MW
    Science; 2016 Sep; 353(6305):1260-4. PubMed ID: 27634529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signatures of van Hove Singularities Probed by the Supercurrent in a Graphene-hBN Superlattice.
    Indolese DI; Delagrange R; Makk P; Wallbank JR; Wanatabe K; Taniguchi T; Schönenberger C
    Phys Rev Lett; 2018 Sep; 121(13):137701. PubMed ID: 30312070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unconventional fermi surface instabilities in the kagome Hubbard model.
    Kiesel ML; Platt C; Thomale R
    Phys Rev Lett; 2013 Mar; 110(12):126405. PubMed ID: 25166827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold attractive spin polarized Fermi lattice gases and the doped positive U Hubbard model.
    Moreo A; Scalapino DJ
    Phys Rev Lett; 2007 May; 98(21):216402. PubMed ID: 17677791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism for Unconventional Superconductivity in the Hole-Doped Rashba-Hubbard Model.
    Greco A; Schnyder AP
    Phys Rev Lett; 2018 Apr; 120(17):177002. PubMed ID: 29756818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frustration- and doping-induced magnetism in a Fermi-Hubbard simulator.
    Xu M; Kendrick LH; Kale A; Gang Y; Ji G; Scalettar RT; Lebrat M; Greiner M
    Nature; 2023 Aug; 620(7976):971-976. PubMed ID: 37532942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spiral magnetism in the single-band Hubbard model: the Hartree-Fock and slave-boson approaches.
    Igoshev PA; Timirgazin MA; Gilmutdinov VF; Arzhnikov AK; Irkhin VY
    J Phys Condens Matter; 2015 Nov; 27(44):446002. PubMed ID: 26465091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cold-atom Fermi-Hubbard antiferromagnet.
    Mazurenko A; Chiu CS; Ji G; Parsons MF; Kanász-Nagy M; Schmidt R; Grusdt F; Demler E; Greif D; Greiner M
    Nature; 2017 May; 545(7655):462-466. PubMed ID: 28541324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-insulator transition of fermions on a kagome lattice at 1/3 filling.
    Nishimoto S; Nakamura M; O'Brien A; Fulde P
    Phys Rev Lett; 2010 May; 104(19):196401. PubMed ID: 20866983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematics of electrons near a van hove singularity.
    Gonzalez J; Guinea F; Vozmediano MA
    Phys Rev Lett; 2000 May; 84(21):4930-3. PubMed ID: 10990834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.