These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 24579572)

  • 21. Interaction Effects with Varying N in SU(N) Symmetric Fermion Lattice Systems.
    Xu S; Barreiro JT; Wang Y; Wu C
    Phys Rev Lett; 2018 Oct; 121(16):167205. PubMed ID: 30387656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mott criticality and pseudogap in Bose-Fermi mixtures.
    Altman E; Demler E; Rosch A
    Phys Rev Lett; 2012 Dec; 109(23):235304. PubMed ID: 23368218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.
    Hensgens T; Fujita T; Janssen L; Li X; Van Diepen CJ; Reichl C; Wegscheider W; Das Sarma S; Vandersypen LMK
    Nature; 2017 Aug; 548(7665):70-73. PubMed ID: 28770852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Entropy in the Non-Fermi-Liquid Regime of the Doped 2D Hubbard Model.
    Lenihan C; Kim AJ; Šimkovic Iv F; Kozik E
    Phys Rev Lett; 2021 Mar; 126(10):105701. PubMed ID: 33784123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation and Dynamics of Antiferromagnetic Correlations in Tunable Optical Lattices.
    Greif D; Jotzu G; Messer M; Desbuquois R; Esslinger T
    Phys Rev Lett; 2015 Dec; 115(26):260401. PubMed ID: 26764974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low-energy properties of the Kondo lattice model.
    Bodensiek O; Zitko R; Peters R; Pruschke T
    J Phys Condens Matter; 2011 Mar; 23(9):094212. PubMed ID: 21339565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring unconventional Hubbard models with doubly modulated lattice gases.
    Greschner S; Santos L; Poletti D
    Phys Rev Lett; 2014 Oct; 113(18):183002. PubMed ID: 25396367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pomeranchuk cooling of SU(2N) ultracold fermions in optical lattices.
    Cai Z; Hung HH; Wang L; Zheng D; Wu C
    Phys Rev Lett; 2013 May; 110(22):220401. PubMed ID: 23767701
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emergent Kagome Electrides.
    You JY; Gu B; Su G; Feng YP
    J Am Chem Soc; 2022 Mar; 144(12):5527-5534. PubMed ID: 35293743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model.
    Chen CC; Muechler L; Car R; Neupert T; Maciejko J
    Phys Rev Lett; 2016 Aug; 117(9):096405. PubMed ID: 27610869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots.
    Wang X; Khatami E; Fei F; Wyrick J; Namboodiri P; Kashid R; Rigosi AF; Bryant G; Silver R
    Nat Commun; 2022 Nov; 13(1):6824. PubMed ID: 36369280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum conductivity in the topological surface state in the SbV
    Song W; Yan Z; Ban L; Xie Y; Liu W; Kong J; Li W; Cheng Q; Xu W; Li D
    Phys Chem Chem Phys; 2022 Aug; 24(31):18983-18991. PubMed ID: 35917181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulation of inhomogeneous distributions of ultracold atoms in an optical lattice via a massively parallel implementation of nonequilibrium strong-coupling perturbation theory.
    Dirks A; Mikelsons K; Krishnamurthy HR; Freericks JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023306. PubMed ID: 25353604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Renormalization group analysis of weakly interacting van der Waals Fermi system.
    Behera SK; Ahalawat M; Jana S; Samal P; Deb P
    J Phys Condens Matter; 2021 Jun; 33(33):. PubMed ID: 34116520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-standard Hubbard models in optical lattices: a review.
    Dutta O; Gajda M; Hauke P; Lewenstein M; Lühmann DS; Malomed BA; Sowiński T; Zakrzewski J
    Rep Prog Phys; 2015 Jun; 78(6):066001. PubMed ID: 26023844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlation-Driven Topological Fermi Surface Transition in FeSe.
    Leonov I; Skornyakov SL; Anisimov VI; Vollhardt D
    Phys Rev Lett; 2015 Sep; 115(10):106402. PubMed ID: 26382687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bands renormalization and superconductivity in the strongly correlated Hubbard model using composite operators method.
    Haurie L; Grandadam M; Pangburn E; Banerjee A; Burdin S; Pépin C
    J Phys Condens Matter; 2024 Mar; 36(25):. PubMed ID: 38215481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectral Properties of Dirac Billiards at the van Hove Singularities.
    Dietz B; Klaus T; Miski-Oglu M; Richter A; Wunderle M; Bouazza C
    Phys Rev Lett; 2016 Jan; 116(2):023901. PubMed ID: 26824540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effective spin model for the spin-liquid phase of the Hubbard model on the triangular lattice.
    Yang HY; Läuchli AM; Mila F; Schmidt KP
    Phys Rev Lett; 2010 Dec; 105(26):267204. PubMed ID: 21231711
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hubbard Model Physics in Transition Metal Dichalcogenide Moiré Bands.
    Wu F; Lovorn T; Tutuc E; MacDonald AH
    Phys Rev Lett; 2018 Jul; 121(2):026402. PubMed ID: 30085734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.